Stable splitting of polyharmonic operators by generalized Stokes systems

A stable splitting of 2m-th order elliptic partial differential equations into 2(m− 1) problems of Poisson type and one generalized Stokes problem is established for any space dimension d ≥ 2 and any integer m ≥ 1. This allows a numerical approximation with standard finite elements that are suited for the Poisson equation and the Stokes system, respectively. For some fourthand sixth-order problems in two and three space dimensions, precise finite element formulations along with a priori error estimates and numerical experiments are presented.

[1]  A. Mcintosh,et al.  HARDY SPACE OF EXACT FORMS ON R , 2004 .

[2]  Thirupathi Gudi,et al.  An interior penalty method for a sixth-order elliptic equation , 2011 .

[3]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[4]  John R. King,et al.  The isolation oxidation of silicon: the reaction-controlled case , 1989 .

[5]  Carsten Carstensen,et al.  Comparison results for the Stokes equations , 2014 .

[6]  Dietmar Gallistl,et al.  Morley Finite Element Method for the Eigenvalues of the Biharmonic Operator , 2014, 1406.2876.

[7]  Shiyuan Gu C0 Interior Penalty Methods for Cahn-Hilliard Equations , 2012 .

[8]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[9]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[10]  Michel Fortin,et al.  Numerical approximation of Mindlin-Reissner plates , 1986 .

[11]  V. Girault,et al.  Problémes généralisés de Stokes , 1992 .

[12]  Ming Wang,et al.  Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..

[13]  Zengjian Lou,et al.  Hardy space of exact forms on $\mathbb{R}^N$ , 2004 .

[14]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[15]  Mira Schedensack,et al.  A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics , 2015 .

[16]  Susanne C. Brenner,et al.  C 0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems , 2015 .

[17]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[18]  A. Ženíšek Interpolation polynomials on the triangle , 1970 .

[19]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[20]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[21]  John W. Barrett,et al.  Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.

[22]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[23]  D. Braess Finite Elements: Finite Elements , 2007 .

[24]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[25]  Dietmar Gallistl,et al.  Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters , 2014, Comput. Methods Appl. Math..

[26]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[27]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[28]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[29]  Vector and scalar potentials, Poincaré's theorem and Korn's inequality , 2007 .

[30]  Philippe Destuynder,et al.  Une modification du modèle de Mindlin pour les plaques minces en flexion présentant un bord libre , 1988 .

[31]  Mira Schedensack,et al.  A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees , 2015, SIAM J. Numer. Anal..

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.