A Goodness-of-fit Test for Copulas

We propose a new rank-based goodness-of-fit test for copulas. It uses the information matrix equality and so relates to the White (1982) specification test. The test avoids parametric specification of marginal distributions, it does not involve kernel weighting, bandwidth selection, or any other strategic choices, it is asymptotically pivotal with a standard distribution, and it is simple to compute compared to available alternatives. The finite-sample size of this type of tests is known to deviate from their nominal size based on asymptotic critical values, and bootstrapping critical values could be a preferred alternative. A power study shows that, in a bivariate setting, the test has reasonable properties compared to its competitors. We conclude with an application in which we apply the test to two stock indices.

[1]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[2]  Peter Hall,et al.  Bootstrap test for difference between means in nonparametric regression , 1990 .

[3]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[4]  J. Horowitz Bootstrap-based critical values for the information matrix test , 1994 .

[5]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[6]  Friedrich Schmid,et al.  A goodness of fit test for copulas based on Rosenblatt's transformation , 2007, Comput. Stat. Data Anal..

[7]  L. Kilian,et al.  In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use? , 2002, SSRN Electronic Journal.

[8]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[9]  Andrew Chesher,et al.  Asymptotic expansions of the informa-tion matrix test statistic , 1991 .

[10]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[11]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[12]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[13]  Valentyn Panchenko,et al.  Goodness-of-fit test for copulas , 2005 .

[14]  Larry W. Taylor,et al.  The size bias of White's information matrix test , 1987 .

[15]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[16]  Jean‐François Quessy,et al.  On a new goodness‐of‐fit process for families of copulas , 2009 .

[17]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[18]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[19]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[20]  Olivier Scaillet,et al.  Kernel Based Goodness-of-Fit Test for Copulas with Fixed Smoothing Parameters , 2005 .

[21]  Bruno Rémillard,et al.  Goodness-of-fit Procedures for Copula Models Based on the Integral Probability Transformation , 2003 .

[22]  Murray D Smith,et al.  Modeling Sample Selection Using Archimedean Copulas , 2003 .

[23]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[24]  Andrew Chesher,et al.  The information matrix test: Simplified calculation via a score test interpretation , 1983 .

[25]  Dimitris Karlis,et al.  Copula model evaluation based on parametric bootstrap , 2008, Comput. Stat. Data Anal..

[26]  P. Schmidt,et al.  Likelihood Based Estimation in a Panel Setting: Robustness, Redundancy and Validity of Copulas , 2009 .

[27]  James G. MacKinnon,et al.  Graphical Methods for Investigating the Size and Power of Hypothesis Tests , 1998 .

[28]  David M. Zimmer,et al.  Modelling the Differences in Counted Outcomes Using Bivariate Copula Models with Application to Mismeasured Counts , 2004 .

[29]  Paul Embrechts,et al.  Using copulae to bound the Value-at-Risk for functions of dependent risks , 2003, Finance Stochastics.

[30]  James G. MacKinnon,et al.  A New Form of the Information Matrix Test , 1992 .

[31]  Peter Schmidt,et al.  Robustness, Redundancy, and Validity of Copulas in Likelihood Models , 2005 .

[32]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[33]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[34]  Goodness-offit test for copulas , 2005 .

[35]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[36]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[37]  A. Hall On the calculation of the information matrix test in the normal linear regression model , 1989 .

[38]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.

[39]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[40]  Tony Lancaster,et al.  THE COVARIANCE MATRIX OF THE INFORMATION MATRIX TEST , 1984 .

[41]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[42]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[43]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .