Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, FexNbSe2, below x = 0.25

Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined—particularly away from ideal packing stoichiometries—and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe2 (FexNbSe2) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials.

[1]  A. Davydov,et al.  Elemental excitations in MoI3 one-dimensional van der Waals nanowires , 2022, Applied Physics Letters.

[2]  S. Samal,et al.  Evolution of Structural Properties in Fe Intercalated 2H-NbSe2: Phase Transformation Induced by Strong Host–Guest Interaction , 2022, The Journal of Physical Chemistry C.

[3]  Lilia S. Xie,et al.  Structure and Magnetism of Iron- and Chromium-Intercalated Niobium and Tantalum Disulfides. , 2022, Journal of the American Chemical Society.

[4]  Sam Mugiraneza,et al.  Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law , 2022, Communications Physics.

[5]  A. Wysmołek,et al.  Raman Optical Activity of 1T-TaS2 , 2022, Nano letters.

[6]  Kenji Watanabe,et al.  Hard Ferromagnetism Down to the Thinnest Limit of Iron-Intercalated Tantalum Disulfide. , 2022, Journal of the American Chemical Society.

[7]  Biao Zhang,et al.  Free-standing 2D non-van der Waals antiferromagnetic hexagonal FeSe semiconductor: halide-assisted chemical synthesis and Fe2+ related magnetic transitions , 2021, Chemical Science.

[8]  R. Birgeneau,et al.  Long-range, non-local switching of spin textures in a frustrated antiferromagnet , 2021, Nature communications.

[9]  R. Birgeneau,et al.  Highly tunable magnetic phases in transition metal dichalcogenide Fe$_{1/3+\delta}$NbS$_2$ , 2021, 2106.01341.

[10]  Wei Zheng,et al.  Temperature-Dependent Phonon Shifts in van der Waals Crystals. , 2021, The journal of physical chemistry letters.

[11]  J. Neaton,et al.  Origins of anisotropic transport in the electrically switchable antiferromagnet Fe1/3NbS2 , 2021, 2104.07591.

[12]  S. Cheong,et al.  Excitations of Intercalated Metal Monolayers in Transition Metal Dichalcogenides. , 2020, Nano letters.

[13]  S. Cabrini,et al.  Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass , 2020, Science Advances.

[14]  J. Neaton,et al.  Half-magnetization plateau and the origin of threefold symmetry breaking in an electrically switchable triangular antiferromagnet , 2020, Physical Review Research.

[15]  C. N. Lau,et al.  Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3 , 2019, Nature Communications.

[16]  J. Simpson,et al.  Quasi-Two-Dimensional Magnon Identification in Antiferromagnetic FePS3via Magneto-Raman Spectroscopy. , 2019, Physical review. B.

[17]  J. Orenstein,et al.  Electrical switching in a magnetically intercalated transition metal dichalcogenide , 2019, Nature Materials.

[18]  Cheol-Hwan Park,et al.  Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.

[19]  P. Ercius,et al.  Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders , 2019, Nature Physics.

[20]  D. Newell,et al.  Comprehensive optical characterization of atomically thin NbSe2. , 2018, Physical review. B.

[21]  A. Kirov,et al.  Crystallography online: Bilbao Crystallographic Server , 2017 .

[22]  Tianran Chen,et al.  Aging, memory, and nonhierarchical energy landscape of spin jam , 2016, Proceedings of the National Academy of Sciences.

[23]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[24]  Jia-An Yan,et al.  Interlayer breathing and shear modes in NbSe2 atomic layers , 2016, 1607.04925.

[25]  Huiwen Ji,et al.  Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.

[26]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[27]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[28]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[29]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[30]  E. Søndergård,et al.  Anomalous phonon behavior: blueshift of the surface boson peak in silica glass with increasing temperature. , 2008, Physical review letters.

[31]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[32]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[33]  Y. Yamamura,et al.  Magnetic and Raman Scattering Studies on Intercalation Compounds FexNbS2 , 2000 .

[34]  W. Ruan,et al.  Non-equilibrium relaxation dynamics in the spin glass and ferromagnetic phases of CrFe , 1993 .

[35]  W. Y. Liang,et al.  Raman study of iron-intercalated niobium selenide , 1985 .

[36]  R. Frindt,et al.  Electron Diffraction Investigation of the AgxTaS2 System II. Superlattices, Structure, and Charge Density Waves in AgxTaS2 , 1982 .

[37]  A. Mitsuishi,et al.  Raman scattering from 2H-NbS2 and intercalated NbS2 , 1982 .

[38]  R. Morris,et al.  Transport properties and magnetic ordering in iron-doped NbSe 2 , 1980 .

[39]  S. Hillenius,et al.  Magnetic susceptibility of iron-doped 2 H -Nb Se 2 , 1979 .

[40]  J. E. Smith,et al.  Effect of charge density wave fluctuations on the frequencies of optic phonons in 2H-TaSe2 and -NbSe2 , 1978 .

[41]  J. E. Smith,et al.  Raman Spectroscopy of Soft Modes at the Charge-Density-Wave Phase Transition in 2 H − Nb Se 2 , 1976 .

[42]  C. S. Wang,et al.  Raman spectrum of metallic layered compound NbSe2 , 1974 .

[43]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[44]  Y. Yamamura,et al.  Raman Scattering from Intercalation Compounds FexNbS2 under High Pressure , 2001 .