Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, FexNbSe2, below x = 0.25
暂无分享,去创建一个
Lilia S. Xie | A. H. Hight Walker | T. Mai | D. K. Bediako | Matthew P. Erodici | Samra Husremović | Oscar Gonzalez | Simon Li | S. S. Fender
[1] A. Davydov,et al. Elemental excitations in MoI3 one-dimensional van der Waals nanowires , 2022, Applied Physics Letters.
[2] S. Samal,et al. Evolution of Structural Properties in Fe Intercalated 2H-NbSe2: Phase Transformation Induced by Strong Host–Guest Interaction , 2022, The Journal of Physical Chemistry C.
[3] Lilia S. Xie,et al. Structure and Magnetism of Iron- and Chromium-Intercalated Niobium and Tantalum Disulfides. , 2022, Journal of the American Chemical Society.
[4] Sam Mugiraneza,et al. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law , 2022, Communications Physics.
[5] A. Wysmołek,et al. Raman Optical Activity of 1T-TaS2 , 2022, Nano letters.
[6] Kenji Watanabe,et al. Hard Ferromagnetism Down to the Thinnest Limit of Iron-Intercalated Tantalum Disulfide. , 2022, Journal of the American Chemical Society.
[7] Biao Zhang,et al. Free-standing 2D non-van der Waals antiferromagnetic hexagonal FeSe semiconductor: halide-assisted chemical synthesis and Fe2+ related magnetic transitions , 2021, Chemical Science.
[8] R. Birgeneau,et al. Long-range, non-local switching of spin textures in a frustrated antiferromagnet , 2021, Nature communications.
[9] R. Birgeneau,et al. Highly tunable magnetic phases in transition metal dichalcogenide Fe$_{1/3+\delta}$NbS$_2$ , 2021, 2106.01341.
[10] Wei Zheng,et al. Temperature-Dependent Phonon Shifts in van der Waals Crystals. , 2021, The journal of physical chemistry letters.
[11] J. Neaton,et al. Origins of anisotropic transport in the electrically switchable antiferromagnet Fe1/3NbS2 , 2021, 2104.07591.
[12] S. Cheong,et al. Excitations of Intercalated Metal Monolayers in Transition Metal Dichalcogenides. , 2020, Nano letters.
[13] S. Cabrini,et al. Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass , 2020, Science Advances.
[14] J. Neaton,et al. Half-magnetization plateau and the origin of threefold symmetry breaking in an electrically switchable triangular antiferromagnet , 2020, Physical Review Research.
[15] C. N. Lau,et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3 , 2019, Nature Communications.
[16] J. Simpson,et al. Quasi-Two-Dimensional Magnon Identification in Antiferromagnetic FePS3via Magneto-Raman Spectroscopy. , 2019, Physical review. B.
[17] J. Orenstein,et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide , 2019, Nature Materials.
[18] Cheol-Hwan Park,et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.
[19] P. Ercius,et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders , 2019, Nature Physics.
[20] D. Newell,et al. Comprehensive optical characterization of atomically thin NbSe2. , 2018, Physical review. B.
[21] A. Kirov,et al. Crystallography online: Bilbao Crystallographic Server , 2017 .
[22] Tianran Chen,et al. Aging, memory, and nonhierarchical energy landscape of spin jam , 2016, Proceedings of the National Academy of Sciences.
[23] J. Ryoo,et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.
[24] Jia-An Yan,et al. Interlayer breathing and shear modes in NbSe2 atomic layers , 2016, 1607.04925.
[25] Huiwen Ji,et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.
[26] Jie Shan,et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.
[27] G. Sheldrick. SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.
[28] G. Sheldrick. Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.
[29] Richard J. Gildea,et al. OLEX2: a complete structure solution, refinement and analysis program , 2009 .
[30] E. Søndergård,et al. Anomalous phonon behavior: blueshift of the surface boson peak in silica glass with increasing temperature. , 2008, Physical review letters.
[31] Hans Wondratschek,et al. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.
[32] J. M. Perez-Mato,et al. Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .
[33] Y. Yamamura,et al. Magnetic and Raman Scattering Studies on Intercalation Compounds FexNbS2 , 2000 .
[34] W. Ruan,et al. Non-equilibrium relaxation dynamics in the spin glass and ferromagnetic phases of CrFe , 1993 .
[35] W. Y. Liang,et al. Raman study of iron-intercalated niobium selenide , 1985 .
[36] R. Frindt,et al. Electron Diffraction Investigation of the AgxTaS2 System II. Superlattices, Structure, and Charge Density Waves in AgxTaS2 , 1982 .
[37] A. Mitsuishi,et al. Raman scattering from 2H-NbS2 and intercalated NbS2 , 1982 .
[38] R. Morris,et al. Transport properties and magnetic ordering in iron-doped NbSe 2 , 1980 .
[39] S. Hillenius,et al. Magnetic susceptibility of iron-doped 2 H -Nb Se 2 , 1979 .
[40] J. E. Smith,et al. Effect of charge density wave fluctuations on the frequencies of optic phonons in 2H-TaSe2 and -NbSe2 , 1978 .
[41] J. E. Smith,et al. Raman Spectroscopy of Soft Modes at the Charge-Density-Wave Phase Transition in 2 H − Nb Se 2 , 1976 .
[42] C. S. Wang,et al. Raman spectrum of metallic layered compound NbSe2 , 1974 .
[43] Hans Wondratschek,et al. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .
[44] Y. Yamamura,et al. Raman Scattering from Intercalation Compounds FexNbS2 under High Pressure , 2001 .