Human visual processing as revealed by magnetoencephalography.

Publisher Summary This chapter describes the human visual system through an introduction of magnetoencephalographic (MEG) studies. Studies using MEG to examine the striate cortex, dorsal pathway, and ventral pathway are described in subsequent sections. First, the MEG responses from the primary visual cortex are discussed. Emphasis is placed on the fact that even the first response component peaking at around 100 ms could originate from the extrastriate cortex in addition to the striate cortex; inducing a response from the primary visual cortex alone is difficult, unlike the somatosensory and auditory cortices. Second, it shows that various visual motion stimuli evoke responses from cortical regions in the dorsal pathway, including MT/V5þ. Detailed analysis of response properties reveals: (1) the role of MT/V5+ in the perception of apparent motion, (2) representation of the spatio-temporal gradient detection mechanisms in the human brain, and (3) spatial integration of speed information independent of direction information. Scalar fields theory is introduced as a mechanism for the detection of complex motions, such as the transparency of two incoherent motions with different speeds. Third, the role of the ventral pathway is discussed with reference to recent MEG studies. Physiological evidence of a restricted locus in the human brain that processes visual shape irrespective of differences in visual cues is shown. IT confirms the involvement of the inferior and lateral temporal areas for the neural processing of face perception. Comparing responses to inverted and upright images of faces revealed the exclusive role of the right hemisphere in holistic processing of the normal upright face configuration.

[1]  N Osaka,et al.  Cortical activity related to cue-invariant shape perception in humans , 2000, Neuroscience.

[2]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[3]  R. Kakigi,et al.  Gaze direction affects face perception in humans , 2002, Neuroscience Letters.

[4]  Gillian Rhodes,et al.  What's lost in inverted faces? , 1993, Cognition.

[5]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[6]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[7]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R Hari,et al.  Face-specific responses from the human inferior occipito-temporal cortex , 1997, Neuroscience.

[9]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[10]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[12]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[13]  Norihiro Sadato,et al.  Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG , 2002, Human brain mapping.

[14]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[15]  S Noachtar,et al.  Pattern visual evoked potentials recorded from human occipital cortex with chronic subdural electrodes. , 1993, Electroencephalography and clinical neurophysiology.

[16]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[17]  Norihiro Sadato,et al.  Role of the superior temporal region in human visual motion perception. , 2005, Cerebral cortex.

[18]  R. Kakigi,et al.  Visual information process in Williams syndrome: intact motion detection accompanied by typical visuospatial dysfunctions , 2002, The European journal of neuroscience.

[19]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[20]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[21]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[22]  Bruce Luber,et al.  Transcranial magnetic stimulation differentially affects speed and direction judgments , 2001, Experimental Brain Research.

[23]  Ryusuke Kakigi,et al.  Interaction between auditory and visual stimulus relating to the vowel sounds in the auditory cortex in humans: a magnetoencephalographic study , 2004, Neuroscience Letters.

[24]  E. Halgren,et al.  Spatio-temporal stages in face and word processing. 1. Depth recorded potentials in the human occipital and parietal lobes , 1994, Journal of Physiology-Paris.

[25]  Jing Liu,et al.  Functional organization of speed tuned neurons in visual area MT. , 2003, Journal of neurophysiology.

[26]  E. Warrington,et al.  Prosopagnosia: a clinical, psychological, and anatomical study of three patients. , 1977, Journal of neurology, neurosurgery, and psychiatry.

[27]  S. J. Swithenby,et al.  Neural processing of human faces: a magnetoencephalographic study , 1998, Experimental Brain Research.

[28]  J G Ojemann,et al.  Neuronal activity related to faces and matching in human right nondominant temporal cortex. , 1992, Brain : a journal of neurology.

[29]  A. Ducati,et al.  Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. , 1988, Electroencephalography and clinical neurophysiology.

[30]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Y. Kaneoke Magnetoencephalography: In search of neural processes for visual motion information , 2006, Progress in Neurobiology.

[32]  J H Maunsell,et al.  Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  T. Allison,et al.  Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. , 1999, Cerebral cortex.

[34]  Bruno Debruille,et al.  Brain potentials reveal covert facial recognition in prosopagnosia , 1989, Neuropsychologia.

[35]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[36]  I. Gauthier,et al.  Perceptual interference supports a non-modular account of face processing , 2003, Nature Neuroscience.

[37]  S. Yamane,et al.  What facial features activate face neurons in the inferotemporal cortex of the monkey? , 2004, Experimental Brain Research.

[38]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[39]  Ryusuke Kakigi,et al.  Temporal structure of the apparent motion perception: a magnetoencephalographic study , 2004, Neuroscience Research.

[40]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[41]  E. Renzi,et al.  Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere , 1986, Neuropsychologia.

[42]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[43]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[44]  Ryusuke Kakigi,et al.  Perception of apparent motion is related to the neural activity in the human extrastriate cortex as measured by magnetoencephalography , 2000, Neuroscience Letters.

[45]  N. Kanwisher,et al.  The selectivity of the occipitotemporal M170 for faces , 2000, Neuroreport.

[46]  R Kakigi,et al.  Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. , 1998, Brain topography.

[47]  A. Ioannides,et al.  Coupling of regional activations in a human brain during an object and face affect recognition task , 2000, Human brain mapping.

[48]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[49]  E. Callaway,et al.  Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex , 1996, Nature.

[50]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[51]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[52]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[53]  R Kakigi,et al.  Visual evoked cortical magnetic fields to pattern reversal stimulation. , 1997, Brain research. Cognitive brain research.

[54]  T. Allison,et al.  Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. , 1999, Cerebral cortex.

[55]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  N. Qian,et al.  Axis-of-motion affects direction discrimination, not speed discrimination , 1999, Vision Research.

[57]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[58]  Ryusuke Kakigi,et al.  Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography , 2002, Neuroscience Research.

[59]  Ryusuke Kakigi,et al.  Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study , 2003, Neuroscience Research.

[60]  H Koizumi,et al.  Functional mapping of the human colour centre with echo-planar magnetic resonance imaging , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  Richard A. Armstrong,et al.  Topographic mapping and source localization of the pattern reversal visual evoked magnetic response , 2005, Brain Topography.

[62]  J. K. Hietanen,et al.  The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex , 2004, Experimental Brain Research.

[63]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[64]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[65]  V. Jousmäki,et al.  Activation trace lifetime of human cortical responses evoked by apparent visual motion , 1997, Neuroscience Letters.

[66]  R Kakigi,et al.  It takes longer to recognize the eyes than the whole face in humans. , 1999, Neuroreport.

[67]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[68]  Shozo Tobimatsu,et al.  Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: A study on the neural generators of N75, P100 and N145 , 1998, Journal of the Neurological Sciences.

[69]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[70]  A. Halliday,et al.  Evoked potentials in clinical testing , 1982 .

[71]  R. Yin Looking at Upside-down Faces , 1969 .

[72]  J. Haxby,et al.  Distinct representations of eye gaze and identity in the distributed human neural system for face perception , 2000, Nature Neuroscience.

[73]  Karl R Gegenfurtner,et al.  Velocity tuned mechanisms in human motion processing , 1999, Vision Research.

[74]  N E Scott-Samuel,et al.  First-order and second-order signals combine to improve perceptual accuracy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[75]  D. Benson,et al.  Prosopagnosia: a bihemispheric disorder. , 1992 .

[76]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[77]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[78]  T. Allison,et al.  Face recognition in human extrastriate cortex. , 1994, Journal of neurophysiology.

[79]  Aina Puce,et al.  Occipitotemporal Activity Elicited by Viewing Eye Movements: A Magnetoencephalographic Study , 2001, NeuroImage.

[80]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[81]  S Zeki,et al.  Going beyond the information given: the relation of illusory visual motion to brain activity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[83]  The early component of the visual evoked magnetic field. , 1995, Neuroreport.

[84]  J. Kulikowski,et al.  Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque , 2002, The European journal of neuroscience.

[85]  Ryusuke Kakigi,et al.  Effects of check size on pattern reversal visual evoked magnetic field and potential , 2000, Brain Research.

[86]  ANDREW T SMITH,et al.  Separate Detection of Moving Luminance and Contrast Modulations: Fact or Artifact? , 1997, Vision Research.

[87]  Ryusuke Kakigi,et al.  Physiological evidence of interaction of first‐ and second‐order motion processes in the human visual system: A magnetoencephalographic study , 2003, Human brain mapping.

[88]  O. Braddick,et al.  What is Noise for the Motion System? , 1996, Vision Research.

[89]  R. Ilmoniemi,et al.  Seeing faces activates three separate areas outside the occipital visual cortex in man , 1991, Neuroscience.

[90]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[91]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  R. Kakigi,et al.  A first comparison of the human multifocal visual evoked magnetic field and visual evoked potential , 2001, Neuroscience Letters.

[93]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[94]  Shinsuke Shimojo,et al.  Vision: Steady-state misbinding of colour and motion , 2004, Nature.

[95]  M. Hasselmo,et al.  Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[96]  E. Renzi,et al.  Prosopagnosia can be associated with damage confined to the right hemisphere—An MRI and PET study and a review of the literature , 1994, Neuropsychologia.

[97]  E. Halgren,et al.  Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices , 1994, Journal of Physiology-Paris.

[98]  A. Puce,et al.  The spatiotemporal dynamics of the face inversion effect: A magneto- and electro-encephalographic study , 2003, Neuroscience.

[99]  D. Paré,et al.  Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: electrophysiological properties and morphological features. , 1995, Journal of neurophysiology.

[100]  Anne-Marie Brouwer,et al.  Hitting moving targets , 1998, Experimental Brain Research.

[101]  D. Jeffreys A face-responsive potential recorded from the human scalp , 2004, Experimental Brain Research.

[102]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[103]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[104]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[105]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[106]  S. Klein,et al.  The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.

[107]  R. Tootell,et al.  Projection of rods and cones within human visual cortex , 2000, Human brain mapping.

[108]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[109]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[110]  B. A. Baldwin,et al.  Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. , 1987, Science.

[111]  R. Kakigi,et al.  Random dots blinking: a new approach to elucidate the activities of the extrastriate cortex in humans , 1998, Neuroreport.

[112]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[113]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[114]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[115]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[116]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[117]  Aina Puce,et al.  Magnetoencephalographic study of occipitotemporal activity elicited by viewing mouth movements , 2004, Clinical Neurophysiology.

[118]  E. R. Cohen,et al.  Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect , 1998, Current Biology.

[119]  K. Linkenkaer-Hansen,et al.  Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography , 1998, Neuroscience Letters.

[120]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[121]  H Suzuki,et al.  Human cortical area responding to stimuli in apparent motion , 1997, Neuroreport.

[122]  S. Zeki,et al.  Motion-from-hue activates area V5 of human visual cortex , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[123]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[124]  Koji Inui,et al.  Temporal Dynamics of Neural Adaptation Effect in the Human Visual Ventral Stream , 2004, The Journal of Neuroscience.

[125]  R Kakigi,et al.  Human face perception traced by magneto- and electro-encephalography. , 1999, Brain research. Cognitive brain research.

[126]  J. C. Meadows The anatomical basis of prosopagnosia , 1974, Journal of neurology, neurosurgery, and psychiatry.

[127]  T. Valentine Upside-down faces: a review of the effect of inversion upon face recognition. , 1988, British journal of psychology.

[128]  N Nakasato,et al.  Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. , 1996, Electroencephalography and clinical neurophysiology.

[129]  D. Maurer,et al.  Expert face processing requires visual input to the right hemisphere during infancy , 2003, Nature Neuroscience.

[130]  M. Farah,et al.  What causes the face inversion effect? , 1995, Journal of experimental psychology. Human perception and performance.

[131]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.