Influence of Pore Length on Hydrogenolysis of Polyethylene within a Mesoporous Support Architecture

[1]  Ryan A. Hackler,et al.  Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis , 2023, Nature Catalysis.

[2]  Erik Luijten,et al.  Coarse-Grained Modeling of Polymer Cleavage within a Porous Catalytic Support. , 2023, ACS macro letters.

[3]  D. Vlachos,et al.  Ni/SiO2 Catalysts for Polyolefin Deconstruction via the Divergent Hydrogenolysis Mechanism , 2022, Applied Catalysis B: Environmental.

[4]  Yuriy Román‐Leshkov,et al.  Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts , 2022, JACS Au.

[5]  B. Peters,et al.  Processive Depolymerization Catalysts: A Population Balance Model for Chemistry’s “While” Loop , 2022, ACS Catalysis.

[6]  L. Kovarik,et al.  Disordered, Sub-Nanometer Ru Structures on CeO2 are Highly Efficient and Selective Catalysts in Polymer Upcycling by Hydrogenolysis , 2022, ACS Catalysis.

[7]  Ryan A. Hackler,et al.  Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. , 2022, Journal of the American Chemical Society.

[8]  Antonio J. Martín,et al.  Direct Conversion of Polypropylene into Liquid Hydrocrabons on Carbon-Supported Platinum Catalysts. , 2021, ChemSusChem.

[9]  D. Vlachos,et al.  Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia , 2021, JACS Au.

[10]  H. Corti,et al.  Non-negligible interactions of alkanes with silica mesopores affect self-diffusivity: Insights from first-principles calculations , 2021 .

[11]  Yuriy Román‐Leshkov,et al.  Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes , 2021, ACS Sustainable Chemistry & Engineering.

[12]  Thomas H. Epps,et al.  Toward polymer upcycling—adding value and tackling circularity , 2021, Science.

[13]  N. Wierckx,et al.  Chemical and biological catalysis for plastics recycling and upcycling , 2021, Nature Catalysis.

[14]  D. Vlachos,et al.  Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts , 2021, ACS Catalysis.

[15]  Hongfei Lin,et al.  Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst , 2021, Chem Catalysis.

[16]  K. Tomishige,et al.  Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes , 2021 .

[17]  Antonio J. Martín,et al.  Catalytic processing of plastic waste on the rise , 2021, Chem.

[18]  A. McNeil,et al.  100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. , 2020, ACS macro letters.

[19]  Anne M. LaPointe,et al.  Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization , 2020, Science.

[20]  Ryan A. Hackler,et al.  Catalytic upcycling of high-density polyethylene via a processive mechanism , 2020, Nature Catalysis.

[21]  M. Ceolín,et al.  Limits imposed by liquid/surface interactions in the determination of tortuosity in mesopores , 2020 .

[22]  Yuriy Román‐Leshkov,et al.  Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions , 2020, JACS Au.

[23]  Robin J. White,et al.  Beyond Mechanical Recycling: Giving New Life to Plastic Waste , 2020, Angewandte Chemie.

[24]  Kai Yang,et al.  Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging , 2019, Nature Communications.

[25]  Andreas Heyden,et al.  Upcycling Single-Use Polyethylene into High-Quality Liquid Products , 2019, ACS central science.

[26]  Robert A. Riggleman,et al.  Polymer Diffusion Is Fastest at Intermediate Levels of Cylindrical Confinement , 2018, Macromolecules.

[27]  Wenyu Huang,et al.  Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process , 2016 .

[28]  E. Iglesia,et al.  Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes. , 2013, Journal of the American Chemical Society.

[29]  Zhiyong Guo,et al.  High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. , 2013, ChemSusChem.

[30]  R. Podgornik,et al.  Polymers pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore. , 2012, Macromolecules.

[31]  M. Doxastakis,et al.  Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. , 2012, The Journal of chemical physics.

[32]  K. Binder,et al.  Ejection of a Polymer Chain from a Nanopore: Theory and Computer Experiment , 2010 .

[33]  Matthias Wessling,et al.  Monte Carlo Simulation of Partially Confined Flexible Polymers , 2002 .

[34]  Rahmi Ozisik,et al.  Diffusion in binary liquid n-alkane and alkane-polyethylene blends , 1998 .

[35]  Yongmei Wang,et al.  Computer Simulation of Semidilute Polymer Solutions in Confined Geometry: Pore as a Microscopic Probe , 1997 .

[36]  F. E. Karasz,et al.  Partitioning inversion of a bimodal polymer solution in confined geometries , 1993 .

[37]  D. S. Pearson,et al.  Viscosity and self-diffusion coefficient of linear polyethylene , 1987 .

[38]  Yongmei Wang,et al.  Lattice Monte Carlo Simulation for the Partitioning of a Bimodal Polymer Mixture into a Slit , 2001 .