Geochronology and geochemistry of zircon and columbite–tantalite group minerals from the Weilasituo Sn–polymetallic deposit, northeastern China: Implications for the relationship between mineralization and the magmatic–hydrothermal transition

[1]  Junyi Pan,et al.  Transient tin mineralization from cooling of magmatic fluids in a long-lived system , 2023, Geology.

[2]  Huimin Su,et al.  A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type , 2022, Journal of Earth Science.

[3]  Kang-Yu Zhu,et al.  In situ geochemical analysis of multiple generations of sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn ore field (Inner Mongolia, northeastern China): Implication for critical metal enrichment and ore-forming process , 2021, Ore Geology Reviews.

[4]  M. Brzozowski,et al.  Geochronology and tectonic setting of the giant Guobaoshan Rb deposit, Central Tianshan, NW China , 2021, Ore Geology Reviews.

[5]  Xiaohui Li,et al.  Temporal-spatial variations in Li-Fe mica compositions from the Weilasituo Sn-polymetallic deposit (NE China): Implications for deposit-scale fluid evolution , 2021, Ore Geology Reviews.

[6]  Yuanfeng Cai,et al.  Zircon Genesis and Geochronology for the Zhangbaoshan Super-Large Rubidium Deposit in the Eastern Tianshan, NW China: Implication to Magmatic-Hydrothermal Evolution and Mineralization Processes , 2021, Frontiers in Earth Science.

[7]  Xiaoyong Yang,et al.  Genesis of Late Cretaceous granite and its related Nb–Ta–W mineralization in Shangbao, Nanling Range: Insights from geochemistry of whole-rock and Nb–Ta minerals , 2021 .

[8]  武广,et al.  内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示 , 2021 .

[9]  Zhenhua Zhao,et al.  Columbite-group minerals and mica of peraluminous granite record the magmatic-hydrothermal processes that formed the Zhaojinggou Ta Nb deposit in the North China Craton , 2020 .

[10]  M. Lespinasse,et al.  Petrogenesis of Nb–(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China , 2019, Lithos.

[11]  Yao-Hui Jiang,et al.  LA-ICP-MS U-Pb geochronology, trace elemental and Lu-Hf isotopic geochemistry of hydrothermal zircons in the Xiadian gold deposit, eastern North China Craton: Implications for the timing of gold mineralization and the origin of ore-forming fluids , 2019, Ore Geology Reviews.

[12]  Zhenhua Zhou,et al.  Ore-formation mechanism of the Weilasituo tin–polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He–Ar isotopes, and Re–Os dating , 2019, Ore Geology Reviews.

[13]  Z. Fan,et al.  Geology, Geochronology and Geochemistry of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia, China , 2019, Minerals.

[14]  Lei Xie,et al.  Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating , 2019, Ore Geology Reviews.

[15]  D. Chew,et al.  The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite , 2018, Geochimica et Cosmochimica Acta.

[16]  M. Ren,et al.  Constraints of hydrothermal and magmatic zircon on the origin of the Yaogangxian tungsten deposit, southern China , 2018, Ore Geology Reviews.

[17]  M. Lespinasse,et al.  A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China , 2018, American Mineralogist.

[18]  F. Holtz,et al.  The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite , 2018, American Mineralogist.

[19]  I. Samson,et al.  Textural Features and Chemical Evolution in Ta-Nb Oxides: Implications for Deuteric Rare-Metal Mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China , 2018, Economic Geology.

[20]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[21]  Lei Xie,et al.  Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling granite (Xianghualing district, south China) , 2018 .

[22]  I. Samson,et al.  Textural and Chemical Constraints on the Formation of Disseminated Granite-hosted W-Ta-Nb Mineralization at the Dajishan Deposit, Nanling Range, Southeastern China , 2017 .

[23]  J. Contreras,et al.  Tin-tantalum-niobium mineralization in the Penouta deposit (NW Spain): Textural features and mineral chemistry to unravel the genesis and evolution of cassiterite and columbite group minerals in a peraluminous system , 2017 .

[24]  M. Ren,et al.  Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization (Southeast China) , 2016 .

[25]  R. Tartèse,et al.  Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition , 2016 .

[26]  A. Neiva,et al.  Two generations of zoned crystals of columbite-group minerals from granitic aplite–pegmatite in the Gouveia area, central Portugal , 2015 .

[27]  Zhenhua Zhou,et al.  Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China , 2015 .

[28]  A. Gerdes,et al.  In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS , 2015 .

[29]  T. Sun,et al.  Influence of radiation damage on Late Jurassic zircon from southern China: Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements , 2014 .

[30]  A. Stepanov,et al.  The key role of mica during igneous concentration of tantalum , 2014, Contributions to Mineralogy and Petrology.

[31]  Robert F. Martin,et al.  THE LATE-STAGE MINIFLOOD OF Ca IN GRANITIC PEGMATITES: AN OPEN-SYSTEM ACID-REFLUX MODEL INVOLVING PLAGIOCLASE IN THE EXOCONTACT , 2014 .

[32]  R. Dall’Agnol,et al.  Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites , 2014 .

[33]  Wei-dong Sun,et al.  Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization , 2014, Mineralium Deposita.

[34]  U. Schaltegger,et al.  How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems? , 2013 .

[35]  Hao Hu,et al.  U–Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP–MS: Implications for geochronology of pegmatite and associated ore deposits , 2013 .

[36]  J. Hermann,et al.  Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox" , 2013 .

[37]  Hui Zhang,et al.  Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon UPb and Hf isotopes , 2012 .

[38]  David London,et al.  The Pegmatite Puzzle , 2012 .

[39]  Petr Černý,et al.  Granitic Pegmatites as Sources of Strategic Metals , 2012 .

[40]  R. Large,et al.  Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P , 2012, Petrology.

[41]  Zhenhua Zhou,et al.  Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn–Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting , 2012 .

[42]  R. Linnen,et al.  Viscosity of flux-rich pegmatitic melts , 2011 .

[43]  R. Linnen,et al.  Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts — An experimental study , 2011 .

[44]  R. Linnen,et al.  Solubility of manganotantalite and manganocolumbite in pegmatitic melts , 2010 .

[45]  A. Kronz,et al.  Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system , 2010 .

[46]  N. Kotova,et al.  Experimental studies of Ta2O5 and columbite–tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa , 2010 .

[47]  M. Kusiak,et al.  Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton , 2009 .

[48]  V. Chevychelov,et al.  Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts , 2009 .

[49]  T. Mernagh,et al.  Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia , 2009 .

[50]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[51]  Changyong Zhou,et al.  Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications , 2007 .

[52]  U. Schaltegger,et al.  Re-equilibration of Zircon in Aqueous Fluids and Melts , 2007 .

[53]  F. Bea,et al.  Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada , 2006, Mineralogical Magazine.

[54]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[55]  P. Hoskin Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia , 2005 .

[56]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[57]  I. Veksler,et al.  Magmatic evolution of Li–F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia) , 2004 .

[58]  A. Zhang,et al.  Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China , 2004, Mineralogical Magazine.

[59]  Jianjun Lu,et al.  Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis , 2004 .

[60]  Yong‐Fei Zheng,et al.  Genesis of zircon and its constraints on interpretation of U-Pb age , 2004 .

[61]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[62]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[63]  F. Poitrasson,et al.  The current state and future of accessory mineral research , 2002 .

[64]  Xiao-Long Huang,et al.  Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi province, Southern China , 2002 .

[65]  A. K. Paul,et al.  Mineralogical and Chemical Characteristics of Complexly-Zoned Columbite-Tantalite from the Rare Metal Pegmatites of Southern Karnataka , 2000 .

[66]  L. Raimbault COMPOSITION OF COMPLEX LEPIDOLITE-TYPE GRANITIC PEGMATITES AND OF CONSTITUENT COLUMBITE-TANTALITE, CHEDEVILLE, MASSIF CENTRAL, FRANCE , 1998 .

[67]  H. Keppler,et al.  Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust , 1997 .

[68]  R. Romer,et al.  UPb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden , 1997 .

[69]  R. Romer,et al.  Implications of UPb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield , 1994 .

[70]  M. Cuney,et al.  The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization , 1992 .

[71]  J. D. Kleeman,et al.  Trace and rare earth elements in cassiterite — sources of components for the tin deposits of the Mole Granite, Australia , 1991 .

[72]  A. J. Anderson,et al.  Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms , 1985 .

[73]  D. Manning The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb , 1981 .

[74]  Jiangang Jiao,et al.  Geochronology and geochemistry of the Beidashan pluton in the southern Great Xing'an Range, Northeast China: Implication for its petrogenesis and metallogenic potential , 2024, Acta Petrologica Sinica.

[75]  Wu Changzhi,et al.  Advances and general characteristics of the amazonite granite and related rubidium deposits in Central Asian Orogenic Belt , 2021, Acta Petrologica Sinica.

[76]  L. Bagas,et al.  Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China , 2017 .

[77]  T. Oberthür,et al.  Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology , 2015 .

[78]  A. Williams-Jones,et al.  13.21 – Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits , 2014 .

[79]  S. Jackson,et al.  Zircon textures and composition: refractory recorders of magmatic volatile evolution? , 2012, Contributions to Mineralogy and Petrology.

[80]  Xue Huai The Xilingeie complex from the eastern part of the Central Asian-Mongolia Orogenic Belt, China: Products of Early Variscan orogeny other than ancient block: Evidence from zircon SHRIMP U-Pb ages. , 2009 .

[81]  R. Romer,et al.  U_Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden , 1996 .