Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays

We demonstrate a set of tools for microscopic control of neutral strontium atoms. We report single-atom loading into an array of sub-wavelength scale optical tweezers, light-shift free control of a narrow-linewidth optical transition, three-dimensional ground-state cooling, and high-fidelity nondestructive imaging of single atoms on sub-wavelength spatial scales. Extending the microscopic control currently achievable in single-valence-electron atoms to species with more complex internal structure, like strontium, unlocks a wealth of opportunities in quantum information science, including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics.

[1]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[2]  A. Cooper,et al.  Alkaline-Earth Atoms in Optical Tweezers , 2018, Physical Review X.

[3]  G. Pagano,et al.  Fast and Scalable Quantum Information Processing with Two‐Electron Atoms in Optical Tweezer Arrays , 2018, Advanced Quantum Technologies.

[4]  M. Lukin,et al.  High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. , 2018, Physical review letters.

[5]  Aishwarya Kumar,et al.  Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon , 2018, Nature.

[6]  J. A. Muniz,et al.  A Robust Narrow-Line Magneto-Optical Trap using Adiabatic Transfer , 2018, 1806.00838.

[7]  I. Deutsch,et al.  Quantum computational supremacy in the sampling of bosonic random walkers on a one-dimensional lattice , 2018, New Journal of Physics.

[8]  T. Rosenband,et al.  Building one molecule from a reservoir of two atoms , 2018, Science.

[9]  Yoshiro Takahashi,et al.  Antiferromagnetic Spin Correlation of SU(N) Fermi Gas in an Optical Superlattice. , 2018, Physical review letters.

[10]  M. Greiner,et al.  Quantum State Engineering of a Hubbard System with Ultracold Fermions. , 2017, Physical review letters.

[11]  D. Barredo,et al.  Synthetic three-dimensional atomic structures assembled atom by atom , 2017, Nature.

[12]  D. Barredo,et al.  Observing the Space- and Time-Dependent Growth of Correlations in Dynamically Tuned Synthetic Ising Models with Antiferromagnetic Interactions , 2017, Physical Review X.

[13]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[14]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[15]  J. Hood,et al.  Motional-ground-state cooling outside the Lamb-Dicke regime , 2017, Physical Review A.

[16]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[17]  M. Holland,et al.  Narrow-line laser cooling by adiabatic transfer , 2017, 1707.01944.

[18]  Mark Saffman,et al.  Quantum computing with neutral atoms , 2017, National science review.

[19]  I. Bloch,et al.  Coherent many-body spin dynamics in a long-range interacting Ising chain , 2017, 1705.08372.

[20]  M. Kozuma,et al.  Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms , 2017, 1704.07060.

[21]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[22]  E. Demler,et al.  A cold-atom Fermi–Hubbard antiferromagnet , 2016, Nature.

[23]  Dietrich Leibfried,et al.  Preparation and coherent manipulation of pure quantum states of a single molecular ion , 2016, Nature.

[24]  Eric R. Anschuetz,et al.  Atom-by-atom assembly of defect-free one-dimensional cold atom arrays , 2016, Science.

[25]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[26]  D. Barredo,et al.  An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays , 2016, Science.

[27]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[28]  Hao Zhang,et al.  Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution. , 2016, Physical review letters.

[29]  M. Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[30]  I. Bloch,et al.  Direct Probing of the Mott Crossover in the SU(N) Fermi-Hubbard Model , 2015, 1511.07287.

[31]  M. Greiner,et al.  Site-resolved imaging of a fermionic Mott insulator , 2015, Science.

[32]  I. Bloch,et al.  Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases. , 2015, Physical review letters.

[33]  C. Clark,et al.  Extracting transition rates from zero-polarizability spectroscopy , 2015 .

[34]  Kohei Kato,et al.  An ytterbium quantum gas microscope with narrow-line laser cooling , 2015, 1509.03233.

[35]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[36]  M. Nichols,et al.  Quantum Gas Microscope for Fermionic Atoms , 2015 .

[37]  M. Greiner,et al.  Site-resolved imaging of fermionic ^{6}Li in an optical lattice. , 2015, Physical review letters.

[38]  Vinay V Ramasesh,et al.  Quantum-gas microscope for fermionic atoms. , 2015, Physical review letters.

[39]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[40]  M Saffman,et al.  Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. , 2015, Physical review letters.

[41]  Matthew Rispoli,et al.  Strongly correlated quantum walks in optical lattices , 2014, Science.

[42]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[43]  C. Regal,et al.  Two-particle quantum interference in tunnel-coupled optical tweezers , 2013, Science.

[44]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[45]  T. Pohl,et al.  Spin squeezing in a Rydberg lattice clock. , 2013, Physical review letters.

[46]  T. Killian,et al.  Strongly coupled plasmas via Rydberg blockade of cold atoms. , 2013, Physical review letters.

[47]  A. Rauschenbeutel,et al.  Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium , 2012, 1211.2673.

[48]  J D Thompson,et al.  Coherence and Raman sideband cooling of a single atom in an optical tweezer. , 2012, Physical review letters.

[49]  C. Regal,et al.  Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State , 2012, 1209.2087.

[50]  Yang Wang,et al.  3D projection sideband cooling. , 2012, Physical review letters.

[51]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[52]  K. Mølmer,et al.  Quantum computation architecture using optical tweezers , 2011, 1107.2632.

[53]  J. Cirac,et al.  Adiabatic preparation of a Heisenberg antiferromagnet using an optical superlattice. , 2011, Physical review letters.

[54]  J. Millen,et al.  Many-body physics with alkaline-earth Rydberg lattices , 2011, 1102.3792.

[55]  G. R. Corbett,et al.  Spectroscopy of a cold strontium Rydberg gas , 2011, 1102.2715.

[56]  I. Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[57]  J. E. Sansonetti,et al.  Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium "Sr I… , 2010 .

[58]  A. Rey,et al.  Heavy fermions in an optical lattice , 2010, 1007.5083.

[59]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[60]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[61]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[62]  M. Takamoto,et al.  Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms , 2010 .

[63]  Jingbiao Chen,et al.  Magic wavelengths for terahertz clock transitions , 2010, 1002.0119.

[64]  A. Rey,et al.  Probing the Kondo lattice model with alkaline-earth-metal atoms , 2009, 0912.4762.

[65]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[66]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[67]  A. Rey,et al.  Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid. , 2009, Physical review letters.

[68]  Jun Ye,et al.  Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock , 2009, 0906.1419.

[69]  N. Poli,et al.  A simplified optical lattice clock , 2008, 0812.4259.

[70]  P. Zoller,et al.  Quantum computing with alkaline-Earth-metal atoms. , 2008, Physical review letters.

[71]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[72]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[73]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[74]  I. Deutsch,et al.  Quantum logic via the exchange blockade in ultracold collisions. , 2006, Physical review letters.

[75]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[76]  H. Katori,et al.  Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime. , 2003, Physical review letters.

[77]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[78]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[79]  G. Stewart Heavy-fermion systems , 1984 .

[80]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .