Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes

The following work is devoted to the construction and validation of a numerical scheme for the 2D shallow water system on unstructured meshes, supplemented by topography and friction source terms. Approximate solutions of frictionless flows are obtained considering a suitable formulation of the conservation laws, involving the water free surface and some fractions of water, accounting for the topography variations. The discretization of the friction source terms relies on the use of a modified Riemann solver for the flux computation. The resulting scheme is then corrected in order to achieve an asymptotic regime preservation. A MUSCL reconstruction is also performed to increase the space order of accuracy. The overall numerical approach is shown to be consistent, well-balanced and to satisfy a domain invariant principle. These results are assessed through several benchmark tests, involving complex geometry and varying bathymetry. In the presence of dry areas, special interest is given to the wave front speed computation, highlighting the stability of the method, even when implementing the asymptotic preserving correction.

[1]  Chiara Simeoni,et al.  Upwinding sources at interfaces in conservation laws , 2004, Appl. Math. Lett..

[2]  François Bouchut,et al.  Upwinding of the source term at interfaces for Euler equations with high friction , 2007, Comput. Math. Appl..

[3]  Denys Dutykh,et al.  The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation , 2010, 1002.4553.

[4]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[5]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[6]  Christophe Berthon,et al.  Efficient well-balanced hydrostatic upwind schemes for shallow-water equations , 2012, J. Comput. Phys..

[7]  Qiuhua Liang,et al.  Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying , 2010 .

[8]  Bruno Després,et al.  Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.

[9]  Emmanuelle Franck Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs , 2012 .

[10]  G. Petrova,et al.  A SECOND-ORDER WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME FOR THE SAINT-VENANT SYSTEM ∗ , 2007 .

[11]  Manuel J. Castro,et al.  WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE , 2007 .

[12]  D. Causon,et al.  The surface gradient method for the treatment of source terms in the shallow-water equations , 2001 .

[13]  Onno Bokhove Flooding and drying in finite-element discretizations of shallow-water equations. Part 2: Two dimensions , 2003 .

[14]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[15]  Marie-Odile Bristeau,et al.  Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes , 2001 .

[16]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[17]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[18]  C. Berthon,et al.  A Free Streaming Contact Preserving Scheme for the M 1 Model , 2010 .

[19]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[20]  Mustafa S. Altinakar,et al.  Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation , 2012 .

[21]  Sebastian Noelle,et al.  Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds , 2011, 1501.03628.

[22]  Luis Cea,et al.  Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations , 2012, J. Comput. Phys..

[23]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[24]  Philippe G. LeFloch,et al.  Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..

[25]  Fabien Marche,et al.  On the well-balanced numerical discretization of shallow water equations on unstructured meshes , 2013, J. Comput. Phys..

[26]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[27]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[28]  Christophe Berthon,et al.  Asymptotic preserving HLL schemes , 2011 .

[29]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..

[30]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[31]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[32]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[33]  Fabien Marche,et al.  An efficient scheme on wet/dry transitions for shallow water equations with friction , 2011 .

[34]  Mária Lukácová-Medvid'ová,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..

[35]  Yulong Xing,et al.  Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes , 2013, J. Sci. Comput..

[36]  Jim W Hall,et al.  A 2D shallow flow model for practical dam-break simulations , 2011 .

[37]  Alan K. Easton,et al.  Moving boundary shallow water flow in circular paraboloidal basins , 2003 .

[38]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[39]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[40]  Pierre Fabrie,et al.  Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes , 2007 .

[41]  I. Nikolos,et al.  An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography , 2009 .

[42]  Roberto Natalini,et al.  Asymptotic High-Order Schemes for 2˟2 Dissipative Hyperbolic Systems , 2008, SIAM J. Numer. Anal..

[43]  Olivier Delestre,et al.  A Numerical Scheme for a Viscous Shallow Water Model with Friction , 2011, J. Sci. Comput..

[44]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[45]  Fayssal Benkhaldoun,et al.  A new finite volume method for flux-gradient and source-term balancing in shallow water equations , 2010 .

[46]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[47]  Alain Dervieux,et al.  A low-diffusion MUSCL scheme for LES on unstructured grids , 2004 .

[48]  Alexandre Ern,et al.  A well‐balanced Runge–Kutta discontinuous Galerkin method for the shallow‐water equations with flooding and drying , 2008 .

[49]  Qiuhua Liang,et al.  A discontinuous Galerkin algorithm for the two-dimensional shallow water equations , 2010 .

[50]  Qiuhua Liang,et al.  Locally Limited and Fully Conserved RKDG2 Shallow Water Solutions with Wetting and Drying , 2012, J. Sci. Comput..

[51]  Pierre-Louis Lions,et al.  Diffusive limit for finite velocity Boltzmann kinetic models , 1997 .

[52]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[53]  Emmanuel Audusse,et al.  A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes , 2005 .

[54]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[55]  Manuel Jesús Castro Díaz,et al.  On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas , 2007, J. Comput. Phys..

[56]  Pierangelo Marcati,et al.  The One-Dimensional Darcy's Law as the Limit of a Compressible Euler Flow , 1990 .

[57]  Scott F. Bradford,et al.  Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography , 2002 .

[58]  Manmohan Singh,et al.  Moving boundary shallow water flow above parabolic bottom topography , 2006 .

[59]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[60]  Pierre Charrier,et al.  An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..

[61]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[62]  R. NATALINI,et al.  Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy , 2007 .

[63]  Bruno Després,et al.  Asymptotic preserving and positive schemes for radiation hydrodynamics , 2006, J. Comput. Phys..

[64]  Fabrice Deluzet,et al.  An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..

[65]  Stéphane Cordier,et al.  An asymptotic preserving scheme for hydrodynamics radiative transfer models , 2007, Numerische Mathematik.

[66]  Nikolaos A. Kampanis,et al.  NUMERICAL FLOOD SIMULATION BY DEPTH AVERAGED FREE SURFACE FLOW MODELS , 2010 .

[67]  Doron Levy,et al.  CENTRAL-UPWIND SCHEMES FOR THE SAINT-VENANT SYSTEM , 2002 .