Temporal interval pattern languages to characterize time flow

Knowledge discovery from temporal data (e.g., time series) is among the most challenging problems in data mining. Compared to static representations like rules or decision trees, the temporal component greatly increases the pattern diversity. It is important to keep the human perception of time flow in mind when representing temporal patterns, otherwise we open the floodgates to misinterpretation and misconception. This article gives an overview of temporal interval patterns, which are considered as being a well‐suited mechanism of knowledge representation, and focusses on the various pattern representation languages. Four typical phenomena in temporal data, and how the pattern languages can cope with them, are discussed. Given the domain knowledge, this provides the reader some guidance on which pattern language may be best‐suited for a given application. WIREs Data Mining Knowl Discov 2014, 4:196–212. doi: 10.1002/widm.1122

[1]  P. S. Sastry,et al.  Discovering Frequent Generalized Episodes When Events Persist for Different Durations , 2007, IEEE Transactions on Knowledge and Data Engineering.

[2]  Milos Hauskrecht,et al.  A Pattern Mining Approach for Classifying Multivariate Temporal Data , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[3]  Mong-Li Lee,et al.  Mining relationships among interval-based events for classification , 2008, SIGMOD Conference.

[4]  Gemma C. Garriga,et al.  Summarizing Sequential Data with Closed Partial Orders , 2005, SDM.

[5]  Heikki Mannila,et al.  Discovery of Frequent Episodes in Event Sequences , 1997, Data Mining and Knowledge Discovery.

[6]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[7]  Marco Aiello,et al.  Document understanding for a broad class of documents , 2002, Int. J. Document Anal. Recognit..

[8]  Milos Hauskrecht,et al.  Mining recent temporal patterns for event detection in multivariate time series data , 2012, KDD.

[9]  Umeshwar Dayal,et al.  PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth , 2001, ICDE 2001.

[10]  Frank Höppner Discovery of Core Episodes from Sequences , 2002, Pattern Detection and Discovery.

[11]  ChenYen-Liang,et al.  Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events , 2009 .

[12]  Thomas Guyet,et al.  Mining Temporal Patterns with Quantitative Intervals , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[13]  Noboru Babaguchi,et al.  Sports event detection using temporal patterns mining and web-casting text , 2008, AREA '08.

[14]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[15]  Suh-Yin Lee,et al.  An efficient algorithm for mining time interval-based patterns in large database , 2010, CIKM.

[16]  Michael R. Berthold,et al.  Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification , 2013, SGAI Conf..

[17]  Paulo J. Azevedo,et al.  Significant motifs in time series , 2012, Stat. Anal. Data Min..

[18]  Yuval Shahar,et al.  Medical Temporal-Knowledge Discovery via Temporal Abstraction , 2009, AMIA.

[19]  Francisco Javier Díez,et al.  Local Conditioning in Bayesian Networks , 1996, Artif. Intell..

[20]  Fabian Mörchen,et al.  Unsupervised pattern mining from symbolic temporal data , 2007, SKDD.

[21]  Tony Lindeberg,et al.  Effective Scale: A Natural Unit for Measuring Scale-Space Lifetime , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Michael R. Berthold,et al.  Pattern graphs: A knowledge-based tool for multivariate temporal pattern retrieval , 2012, 2012 6th IEEE International Conference Intelligent Systems.

[23]  Witold Lukaszewicz,et al.  Reasoning about Plans , 1997, IJCAI.

[24]  G. Aghila,et al.  Temporal pattern mining and reasoning using Reference Event based Temporal Relations (RETR) , 2011 .

[25]  Abraham Otero,et al.  A Data Mining Algorithm for Inducing Temporal Constraint Networks , 2010, IPMU.

[26]  Patrick J. Hayes,et al.  Primitive Intervals versus Point-Based Intervals: Rivals or Allies? , 2006, Comput. J..

[27]  Dmitriy Fradkin,et al.  Robust Mining of Time Intervals with Semi-interval Partial Order Patterns , 2010, SDM.

[28]  Massimiliano Giacomin,et al.  A Fuzzy Extension of Allen's Interval Algebra , 1999, AI*IA.

[29]  Qiang Wang,et al.  Time series analysis with multiple resolutions , 2010, Inf. Syst..

[30]  Paulo J. Azevedo,et al.  Multiresolution Motif Discovery in Time Series , 2010, SDM.

[31]  Boris Motik,et al.  A Fuzzy Model for Representing Uncertain, Subjective, and Vague Temporal Knowledge in Ontologies , 2003, OTM.

[32]  Yuval Shahar,et al.  A Framework for Knowledge-Based Temporal Abstraction , 1997, Artif. Intell..

[33]  Michael R. Berthold,et al.  Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval , 2012, IDA.

[34]  Anthony Bagnall,et al.  A Shapelet Transform for Time Series Classification , 2015 .

[35]  Henry A. Kautz,et al.  Reasoning about plans , 1991, Morgan Kaufmann series in representation and reasoning.

[36]  R Bellazzi,et al.  Mining health care administrative data with temporal association rules on hybrid events. , 2011, Methods of information in medicine.

[37]  John F. Roddick,et al.  ARMADA - An algorithm for discovering richer relative temporal association rules from interval-based data , 2007, Data Knowl. Eng..

[38]  Panagiotis Papapetrou,et al.  Discovering Frequent Poly-Regions in DNA Sequences , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[39]  Arnaud Giacometti,et al.  MILPRIT*: A Constraint-Based Algorithm for Mining Temporal Relational Patterns , 2008, Int. J. Data Warehous. Min..

[40]  Deb Roy,et al.  Mining temporal patterns of movement for video content classification , 2006, MIR '06.

[41]  Milos Hauskrecht,et al.  Multivariate Time Series Classification with Temporal Abstractions , 2009, FLAIRS.

[42]  Frank Klawonn,et al.  Finding informative rules in interval sequences , 2001, Intell. Data Anal..

[43]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[44]  Ada Wai-Chee Fu,et al.  Discovering Temporal Patterns for Interval-Based Events , 2000, DaWaK.

[45]  Tharam S. Dillon,et al.  On the Move to Meaningful Internet Systems, OTM 2010 , 2010, Lecture Notes in Computer Science.

[46]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[47]  Suh-Yin Lee,et al.  CEMiner -- An Efficient Algorithm for Mining Closed Patterns from Time Interval-Based Data , 2011, 2011 IEEE 11th International Conference on Data Mining.

[48]  Howard J. Hamilton,et al.  Knowledge discovery and measures of interest , 2001 .

[49]  Paulo Félix,et al.  Discovering metric temporal constraint networks on temporal databases , 2013, Artif. Intell. Medicine.

[50]  Yen-Liang Chen,et al.  Mining Nonambiguous Temporal Patterns for Interval-Based Events , 2007, IEEE Transactions on Knowledge and Data Engineering.

[51]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[52]  Eamonn J. Keogh,et al.  Time series shapelets: a new primitive for data mining , 2009, KDD.

[53]  Hans Jürgen Ohlbach Relations between fuzzy time intervals , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[54]  Frank Höppner Discovery of core episodes from sequences using generalization for defragmentation of rule sets , 2002 .

[55]  Frank Höppner,et al.  Classification Based on the Trace of Variables over Time , 2007, IDEAL.

[56]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[57]  Dimitrios Gunopulos,et al.  Mining frequent arrangements of temporal intervals , 2009, Knowledge and Information Systems.

[58]  Dan Gâlea,et al.  Multicriteria Decision Making Based on Fuzzy Relations , 2008 .

[59]  Toon Calders,et al.  Mining Compressing Sequential Patterns , 2012, Stat. Anal. Data Min..

[60]  Itay Meiri,et al.  Combining Qualitative and Quantitative Constraints in Temporal Reasoning , 1991, Artif. Intell..

[61]  Fabian Mörchen,et al.  Optimizing time series discretization for knowledge discovery , 2005, KDD '05.

[62]  John F. Roddick,et al.  Linear temporal sequences and their interpretation using midpoint relationships , 2005, IEEE Transactions on Knowledge and Data Engineering.

[63]  Christophe Dousson,et al.  Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems , 1999, IJCAI.

[64]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[65]  Yaw-Ling Lin,et al.  Hybrid Temporal Pattern Mining with Time Grain on Stock Index , 2011, 2011 Fifth International Conference on Genetic and Evolutionary Computing.

[66]  Christian Freksa,et al.  Temporal Reasoning Based on Semi-Intervals , 1992, Artif. Intell..

[67]  Carlo Combi,et al.  Data mining with Temporal Abstractions: learning rules from time series , 2007, Data Mining and Knowledge Discovery.

[68]  Li Wei,et al.  Experiencing SAX: a novel symbolic representation of time series , 2007, Data Mining and Knowledge Discovery.

[69]  Yen-Liang Chen,et al.  Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events , 2009, Data Knowl. Eng..

[70]  Lars Schmidt-Thieme,et al.  On benchmarking frequent itemset mining algorithms: from measurement to analysis , 2005 .

[71]  Paul R. Cohen,et al.  Fluent Learning: Elucidating the Structure of Episodes , 2001, IDA.

[72]  Frank Höppner Discovery of Temporal Patterns. Learning Rules about the Qualitative Behaviour of Time Series , 2001, PKDD.

[73]  Kien A. Hua,et al.  Mining Interval Time Series , 1999, DaWaK.

[74]  Michael R. Berthold,et al.  Enriching Multivariate Temporal Patterns with Context Information to Support Classification , 2013 .

[75]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[76]  Eamonn J. Keogh,et al.  Clustering of time-series subsequences is meaningless: implications for previous and future research , 2004, Knowledge and Information Systems.

[77]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[78]  Fabian Mörchen,et al.  Efficient mining of understandable patterns from multivariate interval time series , 2007, Data Mining and Knowledge Discovery.