Generalized Darting Monte Carlo

One of the main shortcomings of Markov chain Monte Carlo samplers is their inability to mix between modes of the target distribution. In this paper we show that advance knowledge of the location of these modes can be incorporated into the MCMC sampler by introducing mode-hopping moves that satisfy detailed balance. The proposed sampling algorithm explores local mode structure through local MCMC moves (e.g. diffusion or Hybrid Monte Carlo) but in addition also represents the relative strengths of the different modes correctly using a set of global moves. This 'mode-hopping' MCMC sampler can be viewed as a generalization of the darting method [1]. We illustrate the method on learning Markov random fields and evaluate it against the spherical darting algorithm on a 'real world' vision application of inferring 3D human body pose distributions from 2D image information.

[1]  H. Tjelmeland,et al.  Mode Jumping Proposals in MCMC , 2001 .

[2]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[3]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[4]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  A. Voter,et al.  Smart Darting Monte Carlo , 2001 .

[6]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[7]  A. Voter A Monte Carlo method for determining free‐energy differences and transition state theory rate constants , 1985 .

[8]  Neill W Campbell,et al.  IEEE International Conference on Computer Vision and Pattern Recognition , 2008 .

[9]  Mark A. Miller,et al.  Efficient free energy calculations by variationally optimized metric scaling: Concepts and applications to the volume dependence of cluster free energies and to solid–solid phase transitions , 2000 .

[10]  David J. Fleet,et al.  People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[13]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[14]  C. Jarzynski Targeted free energy perturbation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[16]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[17]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[18]  Geoffrey E. Hinton,et al.  A Mode-Hopping MCMC sampler , 2003 .

[19]  Geoffrey E. Hinton,et al.  Wormholes Improve Contrastive Divergence , 2003, NIPS.

[20]  E. Ziegel,et al.  Artificial intelligence and statistics , 1986 .

[21]  Cristian Sminchisescu,et al.  Estimating Articulated Human Motion with Covariance Scaled Sampling , 2003, Int. J. Robotics Res..

[22]  Cristian Sminchisescu,et al.  Building Roadmaps of Local Minima of Visual Models , 2002, ECCV.

[23]  Cristian Sminchisescu,et al.  Kinematic jump processes for monocular 3D human tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[24]  Mun Wai Lee,et al.  Proposal maps driven MCMC for estimating human body pose in static images , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[27]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[28]  Cristian Sminchisescu,et al.  Hyperdynamics Importance Sampling , 2002, ECCV.

[29]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[30]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[31]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[32]  W. C. Still,et al.  A Smart Monte Carlo Technique for Free Energy Simulations of Multiconformational Molecules. Direct Calculations of the Conformational Populations of Organic Molecules , 1995 .

[33]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[34]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..