A numerical investigation of central binary collision of droplets

The paper presents a numerical investigation of the central collision of two equal-sized droplets in a gaseous phase. The investigation is based on the numerical solution of the Navier–Stokes equations in their axi-symmetric form using the finite volume technique. The Volume of Fluid Method (V.O.F) is employed for tracking the liquid–gas interface. An adaptive local grid refinement technique developed recently is used in order to increase the resolution around the interface. By using two V.O.F indicator functions the identity of each droplet is preserved and can be detected after droplet contact until coalescence. The results are compared with available experimental data and provide a very detailed picture of the collision process, the ligament formation and dimensions, the pinch off mechanism and the creation of the satellite droplet. The conversion of the droplet’s kinetic energy to the surface energy and vise versa, the energy viscous dissipation as well as the maximum deformation of the droplets are also evaluated.

[1]  M. Schelkle,et al.  Three-dimensional lattice Boltzmann simulations of binary collisions between equal droplets , 1995 .

[2]  N. Ashgriz,et al.  Coalescence efficiencies of fuel droplets in binary collisions , 1989 .

[3]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[4]  M. F. Tomé,et al.  Numerical Simulation of 3D Multi-fluid Flows , 2002 .

[5]  J. R. Adam,et al.  The Collision, Coalescence, and Disruption of Water Droplets , 1968 .

[6]  Numerical simulation of droplet deformation anddroplet coagulation applying lattice gas models , 1991 .

[7]  Chung King Law,et al.  An experimental investigation on the collision behaviour of hydrocarbon droplets , 1992, Journal of Fluid Mechanics.

[8]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[9]  Nikos Nikolopoulos,et al.  Normal impingement of a droplet onto a wall film: a numerical investigation , 2005 .

[10]  John Tsamopoulos,et al.  Nonlinear oscillations of inviscid drops and bubbles , 1983, Journal of Fluid Mechanics.

[11]  C. Rhie,et al.  A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation , 1982 .

[12]  G. Brenn,et al.  Collision and coalescence of droplets of various liquids , 1989 .

[13]  M. Schelkle,et al.  39 P 06 Two-dimensional lattice gas simulations of droplet deformation and non-central droplet collisions , 1993 .

[14]  Hrvoje Jasak,et al.  Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .

[15]  N. Ashgriz,et al.  Coalescence and separation in binary collisions of liquid drops , 1990, Journal of Fluid Mechanics.

[16]  J. Latham,et al.  The interaction of falling water drops: coalescence , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[18]  T. Patzek,et al.  Nonlinear oscillations of inviscid free drops , 1991 .

[19]  G. Foote,et al.  A Numerical Method for Studying Liquid Drop Behavior: Simple Oscillation , 1973 .

[20]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[21]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[22]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[23]  C. D. Stow,et al.  Collisions between liquid drops , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  G. Brenn,et al.  Collision and merging of two equal droplets of propanol , 1989 .

[25]  D. Kuhlmann-wilsdorf,et al.  New Data on the Shear Stresses and Energies of ½ 〈110〉, {111} Edge Dislocations in Elastically Anisotropic fcc Metals , 1968 .

[26]  S. G. Mason,et al.  The gravity approach and coalescence of fluid drops at liquid interfaces , 1963 .

[27]  Gretar Tryggvason,et al.  Computations of multi-fluid flows , 1992 .

[28]  Numerical simulation of head-on droplet collision : Effect of viscosity on maximum deformation , 2005 .

[29]  N. Ashgriz,et al.  Binary collision dynamics of fuel droplets , 1987 .

[30]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[31]  Gretar Tryggvason,et al.  Head-on collision of drops—A numerical investigation , 1993 .

[32]  M. Orme,et al.  Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity , 2003 .

[33]  Andreas Theodorakakos,et al.  Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface , 2004 .

[34]  Thomas S. Lundgren,et al.  Oscillations of drops in zero gravity with weak viscous effects , 1988, Journal of Fluid Mechanics.

[35]  M. Orme,et al.  Experiments on the dynamics of droplet collisions in a vacuum , 2000 .

[36]  A. Frohn,et al.  Three-dimensional Navier-Stokes simulation of binary collisions between droplets of equal size , 1995 .

[37]  Chung King Law,et al.  Regimes of coalescence and separation in droplet collision , 1997, Journal of Fluid Mechanics.

[38]  Nikos Nikolopoulos,et al.  Three-dimensional numerical investigation of a droplet impinging normally onto a wall film , 2007, J. Comput. Phys..

[39]  Gretar Tryggvason,et al.  Numerical simulations of three-dimensional drop collisions , 1996 .