Simultaneous spatial and temporal focusing for axial scanning.

We show theoretically and experimentally that simultaneous spatial and temporal focusing can scan the temporal focal plane axially by adjusting the group velocity dispersion in the excitation beam path. When the group velocity dispersion is small, the pulse width at the temporal focal plane is transform-limited, and the amount of shift depends linearly upon the dispersion. By adding a meter of large mode area fiber into the system, we demonstrate this axial scanning capability in a fiber delivery configuration. Because a transform-limited pulse width is automatically recovered at the temporal focal plane, simultaneous spatial and temporal focusing negates the need for any dispersion pre-compensation, further facilitating its integration into a fiber delivery system. A highly promising application for simultaneous spatial and temporal focusing is an axial scanning multiphoton fluorescence fiber probe without any moving parts at the distal end and without dispersion pre-compensation.

[1]  Yaron Silberberg,et al.  Generation of a dark nonlinear focus by spatio-temporal coherent control , 2006 .

[2]  L. Fu,et al.  Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. , 2006, Optics express.

[3]  Amanda J Wright,et al.  Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. , 2006, Optics express.

[4]  Y. Silberberg,et al.  Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. , 2005, Optics letters.

[5]  Peter T. C. So,et al.  Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy , 2005, SPIE BiOS.

[6]  W. Zipfel,et al.  Simultaneous spatial and temporal focusing of femtosecond pulses , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[7]  Y. Silberberg,et al.  Scanningless depth-resolved microscopy. , 2005, Optics express.

[8]  Melissa C Skala,et al.  Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. , 2005, Cancer research.

[9]  Peng Xi,et al.  Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue. , 2005, Optics express.

[10]  Angelique Kano,et al.  Design and demonstration of a miniature catheter for a confocal microendoscope. , 2004, Applied optics.

[11]  F. Helmchen,et al.  Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. , 2004, Optics letters.

[12]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[13]  Fritjof Helmchen,et al.  Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. , 2004, Optics letters.

[14]  Raymond P. Molloy,et al.  In vivo multiphoton microscopy of deep brain tissue. , 2004, Journal of neurophysiology.

[15]  Min Gu,et al.  Two-photon fluorescence endoscopy with a micro-optic scanning head. , 2003, Optics letters.

[16]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Yatagai,et al.  Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching. , 2003, Optics express.

[18]  Rebecca R. Richards-Kortum,et al.  Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues , 2002, IEEE Transactions on Biomedical Engineering.

[19]  M Gu,et al.  Fibre‐optic two‐photon scanning fluorescence microscopy , 2002, Journal of microscopy.

[20]  Alexander L Gaeta,et al.  Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. , 2002, Optics letters.

[21]  R Richards-Kortum,et al.  Fiber confocal reflectance microscope (FCRM) for in-vivo imaging. , 2001, Optics express.

[22]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[23]  A. Rouse,et al.  Multispectral imaging with a confocal microendoscope. , 2000, Optics letters.

[24]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[25]  Rijk Schuetz,et al.  Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[26]  G S Kino,et al.  Micromachined scanning confocal optical microscope. , 1996, Optics letters.

[27]  K. Nelson,et al.  Programmable phase and amplitude femtosecond pulse shaping. , 1993, Optics letters.

[28]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[29]  A. Weiner,et al.  Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. , 1990, Optics letters.

[30]  Oscar E. Martínez,et al.  Grating and prism compressors in the case of finite beam size , 1986 .