Computational Modeling of Tumor-Induced Angiogenesis

AbstractAngiogenesis is the growth of new capillaries from preexisting ones. The ability to trigger angiogenesis is one of the hallmarks of cancer, and is a necessary step for a tumor to become malignant. This paper discusses computational modeling of tumor-induced angiogenesis with particular reference to mathematical modeling, numerical simulation, and comparison with experiments. We describe the basic biological phenomena associated with angiogenesis, and discuss how they can be incorporated into mathematical models. We emphasize the crucial role of numerical methods for model development. In particular, computational methods for tumor angiogenesis need to be geometrically flexible and capable of dealing with higher-order derivatives, which suggests isogeometric analysis as an ideal candidate. Finally, we propose an algorithm based on graph theory as a potential method for quantitative validation of tumor angiogenesis models.

[1]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001, Bulletin of mathematical biology.

[2]  Mark A. J. Chaplain,et al.  A mathematical model of vascular tumour growth and invasion , 1996 .

[3]  Heiko Rieger,et al.  Interstitial Fluid Flow and Drug Delivery in Vascularized Tumors: A Computational Model , 2013, PloS one.

[4]  Ruslan Hlushchuk,et al.  Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[5]  Andreas Menzel,et al.  Modeling of anisotropic wound healing , 2015 .

[6]  S. McDougall,et al.  Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies , 2002, Bulletin of mathematical biology.

[7]  Leilei Peng,et al.  Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids. , 2004, Applied optics.

[8]  P. Maini,et al.  Mathematical oncology: Cancer summed up , 2003, Nature.

[9]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[10]  M. Chaplain,et al.  A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. , 1996, IMA journal of mathematics applied in medicine and biology.

[11]  W. Leenders,et al.  Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. , 2002, Endothelium : journal of endothelial cell research.

[12]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[13]  H Rieger,et al.  Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. , 2008, Journal of theoretical biology.

[14]  F J Vermolen,et al.  A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure , 2012, Journal of mathematical biology.

[15]  R. Jain Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy , 2005, Science.

[16]  N. Hill,et al.  A biased random walk model for the trajectories of swimming micro-organisms. , 1997, Journal of theoretical biology.

[17]  Tiago Rodrigues,et al.  The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis , 2015, PLoS Comput. Biol..

[18]  M. Chaplain,et al.  Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. , 1996, Invasion & metastasis.

[19]  Gordon Broderick,et al.  Using an agent-based model to analyze the dynamic communication network of the immune response , 2011, Theoretical Biology and Medical Modelling.

[20]  Ignasi Colominas,et al.  Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis , 2014 .

[21]  Thomas J. R. Hughes,et al.  Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations , 2015 .

[22]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[23]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[24]  Mauro Ferrari,et al.  Mathematical modeling of cancer progression and response to chemotherapy , 2006, Expert review of anticancer therapy.

[25]  José Manuel García-Aznar,et al.  Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration , 2011 .

[26]  M. Pauletti,et al.  Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .

[27]  Hector Gomez,et al.  A Mathematical Model Coupling Tumor Growth and Angiogenesis , 2016, PloS one.

[28]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[29]  Xiaoming Zheng,et al.  A Cell-based Model of Endothelial Cell Migration, Proliferation and Maturation During Corneal Angiogenesis , 2010, Bulletin of mathematical biology.

[30]  Axel R Pries,et al.  The microcirculation: physiology at the mesoscale , 2011, The Journal of physiology.

[31]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[32]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[33]  D. J. Benson,et al.  Patient-specific isogeometric structural analysis of aortic valve closure , 2015 .

[34]  Panayotis G. Kevrekidis,et al.  A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors , 2007, Math. Comput. Model..

[35]  Haymo Kurz,et al.  Angiogenesis and vascular remodeling by intussusception: from form to function. , 2003, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[36]  R. Weinberg One Renegade Cell: How Cancer Begins , 1998 .

[37]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[38]  Michele Conti,et al.  Innovative and efficient stent flexibility simulations based on isogeometric analysis , 2015 .

[39]  Peter Carmeliet,et al.  Angiogenesis in life, disease and medicine , 2005, Nature.

[40]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[41]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[42]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[43]  A. Pries,et al.  Blood flow in microvascular networks. Experiments and simulation. , 1990, Circulation research.

[44]  Gaiping Zhao,et al.  Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. , 2008, Journal of biomechanics.

[45]  Charles A. Taylor,et al.  Patient-specific modeling of cardiovascular mechanics. , 2009, Annual review of biomedical engineering.

[46]  Alexander R. A. Anderson,et al.  A gradient-driven mathematical model of antiangiogenesis , 2000 .

[47]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[48]  S. McDougall,et al.  Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. , 2006, Journal of theoretical biology.

[49]  M. Plank,et al.  A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. , 2004, Journal of theoretical biology.

[50]  S. McDougall,et al.  Mathematical modeling of tumor-induced angiogenesis. , 2006, Annual review of biomedical engineering.

[51]  P. K. Mainib,et al.  Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth , 2007 .

[52]  Eugenia Corvera Poiré,et al.  Tumor Angiogenesis and Vascular Patterning: A Mathematical Model , 2011, PloS one.

[53]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[54]  D A Lauffenburger,et al.  Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. , 1991, Journal of theoretical biology.

[55]  Lei Xu,et al.  Normalization of the vasculature for treatment of cancer and other diseases. , 2011, Physiological reviews.

[56]  R J Jarvis,et al.  A mathematical analysis of a model for tumour angiogenesis , 1995, Journal of mathematical biology.

[57]  F. Yuan,et al.  Numerical simulations of angiogenesis in the cornea. , 2001, Microvascular research.

[58]  Jie Lou,et al.  Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide. , 2011, Journal of theoretical biology.

[59]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[60]  J. Glazier,et al.  3D Multi-Cell Simulation of Tumor Growth and Angiogenesis , 2009, PloS one.

[61]  Yi Jiang,et al.  Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis , 2009, PLoS Comput. Biol..

[62]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[63]  Jacques Ferlay,et al.  GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet] , 2013 .

[64]  Ignasi Colominas,et al.  Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis , 2013, International journal for numerical methods in biomedical engineering.

[65]  Q. Long,et al.  Numerical simulation of inhibiting effects on solid tumour cells in anti-angiogenic therapy: application of coupled mathematical model of angiogenesis with tumour growth , 2011 .

[66]  Shuyu Sun,et al.  A deterministic model of growth factor-induced angiogenesis , 2005, Bulletin of mathematical biology.

[67]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[68]  Robert J. Gillies,et al.  Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions , 2011, PloS one.

[69]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[70]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[71]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[72]  Michael Bergdorf,et al.  A hybrid model for three-dimensional simulations of sprouting angiogenesis. , 2008, Biophysical journal.

[73]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[74]  Vittorio Cristini,et al.  Mathematical Oncology: How Are the Mathematical and Physical Sciences Contributing to the War on Breast Cancer? , 2010, Current breast cancer reports.

[75]  D. Balding,et al.  A mathematical model of tumour-induced capillary growth. , 1985, Journal of theoretical biology.

[76]  Hector Gomez,et al.  Full-scale, three-dimensional simulation of early-stage tumor growth: The onset of malignancy , 2017 .

[77]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[78]  D. Cheresh,et al.  Tumor angiogenesis: molecular pathways and therapeutic targets , 2011, Nature Medicine.

[79]  B. Sleeman,et al.  Tumour induced angiogenesis as a reinforced random walk: Modelling capillary network formation without endothelial cell proliferation , 2002 .

[80]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[81]  R. Travasso,et al.  Novel approach to vascular network modeling in 3D , 2012, 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG).

[82]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[83]  Min Wu,et al.  The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. , 2013, Journal of theoretical biology.

[84]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[85]  G. Svet-Moldavsky,et al.  Susceptibility of tumor cells in different phases of the mitotic cycle to the effect of immune lymphocytes. , 1974, Journal of the National Cancer Institute.

[86]  P K Maini,et al.  A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. , 2008, Journal of theoretical biology.

[87]  R. Auerbach,et al.  Tumor-induced neovascularization in the mouse eye. , 1982, Journal of the National Cancer Institute.

[88]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[89]  H. Frieboes,et al.  Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth , 2007, NeuroImage.

[90]  Alexander R. A. Anderson,et al.  A Mathematical Model for Capillary Network Formation in the Absence of Endothelial Cell Proliferation , 1998 .

[91]  A. Pries,et al.  Structural adaptation and stability of microvascular networks: theory and simulations. , 1998, The American journal of physiology.

[92]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[93]  A. Tammar Introduction to the Cellular and Molecular Biology of Cancer , 1987 .

[94]  J. Folkman,et al.  Tumor growth and neovascularization: an experimental model using the rabbit cornea. , 1974, Journal of the National Cancer Institute.

[95]  H. Frieboes,et al.  Nonlinear modelling of cancer: bridging the gap between cells and tumours , 2010, Nonlinearity.

[96]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[97]  M. Chaplain,et al.  Continuous and Discrete Mathematical Models of Tumor‐Induced Angiogenesis , 1999 .

[98]  J. Tinsley Oden,et al.  SELECTION AND ASSESSMENT OF PHENOMENOLOGICAL MODELS OF TUMOR GROWTH , 2013 .

[99]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[100]  B. Sleeman,et al.  Mathematical modeling of the onset of capillary formation initiating angiogenesis , 2001, Journal of mathematical biology.

[101]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[102]  Ju Liu,et al.  Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations , 2013, J. Comput. Phys..

[103]  Panayotis G. Kevrekidis,et al.  Towards a reduced model for angiogenesis: A hybrid approach , 2005, Math. Comput. Model..

[104]  Rakesh K. Jain,et al.  Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy , 2001, Nature Medicine.

[105]  Deakin As,et al.  Model for initial vascular patterns in melanoma transplants. , 1976 .

[106]  M. J. Gómez-Benito,et al.  Challenges in the Modeling of Wound Healing Mechanisms in Soft Biological Tissues , 2014, Annals of Biomedical Engineering.

[107]  Thomas E Yankeelov,et al.  Clinically Relevant Modeling of Tumor Growth and Treatment Response , 2013, Science Translational Medicine.

[108]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[109]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[110]  B. Reglin,et al.  Structural adaptation of microvascular networks: functional roles of adaptive responses. , 2001, American journal of physiology. Heart and circulatory physiology.

[111]  A. Czirók,et al.  The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. , 2010, Mathematical modelling of natural phenomena.

[112]  P. Wriggers,et al.  NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding , 2014 .

[113]  F. Yuan,et al.  Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations. , 2008, Microvascular research.

[114]  M. Plank,et al.  Lattice and non-lattice models of tumour angiogenesis , 2004, Bulletin of mathematical biology.

[115]  Nicholas S. Flann,et al.  Discovering novel cancer therapies: A computational modeling and search approach , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[116]  Aleksander S Popel,et al.  A systems biology view of blood vessel growth and remodelling , 2013, Journal of cellular and molecular medicine.

[117]  Mark A. J. Chaplain,et al.  On Growth and Form: Spatio-temporal Pattern Formation in Biology , 2000 .

[118]  John S. Condeelis,et al.  Chemotaxis in cancer , 2011, Nature Reviews Cancer.

[119]  V. Cristini,et al.  Nonlinear simulation of tumor growth , 2003, Journal of mathematical biology.

[120]  Anusuya Das,et al.  A hybrid continuum–discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[121]  H Rieger,et al.  Vascular network remodeling via vessel cooption, regression and growth in tumors. , 2005, Journal of theoretical biology.

[122]  H. Dvorak,et al.  Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets , 2012, Clinical & Experimental Metastasis.

[123]  Colin Phipps,et al.  Mathematical Model of the Effect of Interstitial Fluid Pressure on Angiogenic Behavior in Solid Tumors , 2011, Comput. Math. Methods Medicine.

[124]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[125]  J. Zu,et al.  3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis , 2014, 1403.5612.

[126]  G. Box Robustness in the Strategy of Scientific Model Building. , 1979 .

[127]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[128]  J. Sethian,et al.  Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method , 2006, Journal of mathematical biology.

[129]  K. Loeb,et al.  Multiple mutations and cancer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Andras Czirok,et al.  Multicellular sprouting in vitro. , 2008, Biophysical journal.

[131]  P. Maini,et al.  A cellular automaton model for tumour growth in inhomogeneous environment. , 2003, Journal of theoretical biology.

[132]  Ilya Starodumov,et al.  Three dimensional structures predicted by the modified phase field crystal equation , 2016 .

[133]  Dai Fukumura,et al.  Dissecting tumour pathophysiology using intravital microscopy , 2002, Nature Reviews Cancer.

[134]  M. Chaplain,et al.  Mathematical Modelling of Angiogenesis , 2000, Journal of Neuro-Oncology.

[135]  Alexander R. A. Anderson,et al.  Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis , 2006, Math. Comput. Model..

[136]  H. M. Byrne,et al.  Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions , 1995 .

[137]  Quan Long,et al.  Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. , 2009, Journal of biomechanics.

[138]  Xiaoping Qian,et al.  Continuity and convergence in rational triangular Bézier spline based isogeometric analysis , 2015 .

[139]  L Preziosi,et al.  A review of mathematical models for the formation of vascular networks. , 2013, Journal of theoretical biology.

[140]  Axel R. Pries,et al.  Angiogenesis: An Adaptive Dynamic Biological Patterning Problem , 2013, PLoS Comput. Biol..

[141]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[142]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.

[143]  M A J Chaplain,et al.  A Hybrid Discrete-Continuum Mathematical Model of Pattern Prediction in the Developing Retinal Vasculature , 2012, Bulletin of mathematical biology.

[144]  M. J. Holmes,et al.  A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. , 2000, Journal of theoretical biology.

[145]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[146]  S. Dimmeler,et al.  MicroRNAs in myocardial infarction , 2015, Nature Reviews Cardiology.

[147]  W. Kilarski,et al.  Biomechanical regulation of blood vessel growth during tissue vascularization , 2009, Nature Medicine.

[148]  Howard A. Levine,et al.  A Mathematical Model for the Role of Cell Signal Transduction in the Initiation and Inhibition of Angiogenesis , 2003, Growth factors.

[149]  A. Anderson,et al.  A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion , 2005 .

[150]  Peter Carmeliet,et al.  Role of endothelial cell metabolism in vessel sprouting. , 2013, Cell metabolism.

[151]  Yusheng Feng,et al.  Toward Predictive Multiscale Modeling of Vascular Tumor Growth , 2015, Archives of Computational Methods in Engineering.

[152]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[153]  Jesús A. Izaguirre,et al.  COMPUCELL, a multi-model framework for simulation of morphogenesis , 2004, Bioinform..

[154]  Liesbet Geris,et al.  MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells , 2012, PLoS Comput. Biol..

[155]  J. Gehl,et al.  [Immunotherapy of cancer]. , 1976, Ugeskrift for laeger.

[156]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[157]  H. Gerhardt,et al.  Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting , 2010, Nature Cell Biology.

[158]  J. Folkman,et al.  A model of angiogenesis in the mouse cornea. , 1996, Investigative ophthalmology & visual science.

[159]  Bruce T. Murray,et al.  Adaptive finite element methodology for tumour angiogenesis modelling , 2007 .

[160]  Gabriele Bergers,et al.  ENDOTHELIAL PRECURSOR CELLS Undifferentiated cells in the adult bone marrow that can travel through the blood to sites of ongoing angiogenesis , and differentiate into mature endothelial cells , 2003 .

[161]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[162]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[163]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[164]  Mark A. J. Chaplain,et al.  An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .

[165]  A.A. Qutub,et al.  Multiscale models of angiogenesis , 2009, IEEE Engineering in Medicine and Biology Magazine.

[166]  M J Plank,et al.  A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. , 2003, Mathematical medicine and biology : a journal of the IMA.

[167]  Yi Jiang,et al.  A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. , 2007, Biophysical journal.

[168]  D. McDonald,et al.  Rapid vascular regrowth in tumors after reversal of VEGF inhibition. , 2006, The Journal of clinical investigation.

[169]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[170]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[171]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[172]  R K Jain,et al.  Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. , 1990, Microvascular research.

[173]  M. Chaplain,et al.  Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis , 1995 .

[174]  R. Travasso,et al.  The phase-field model in tumor growth , 2011 .

[175]  P. Choyke,et al.  Imaging of angiogenesis: from microscope to clinic , 2003, Nature Medicine.

[176]  Khalid Saeed,et al.  K3M: A universal algorithm for image skeletonization and a review of thinning techniques , 2010, Int. J. Appl. Math. Comput. Sci..

[177]  M. Chaplain,et al.  A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. , 1993, IMA journal of mathematics applied in medicine and biology.

[178]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[179]  M. Dewhirst,et al.  The novel tubulin-binding drug BTO-956 inhibits R3230AC mammary carcinoma growth and angiogenesis in Fischer 344 rats. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[180]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[181]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[182]  Alexander R. A. Anderson,et al.  Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies , 2005, Math. Comput. Model..

[183]  R K Jain,et al.  Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. , 1989, Microvascular research.

[184]  M. J. Gómez-Benito,et al.  Numerical modelling of the angiogenesis process in wound contraction , 2013, Biomechanics and modeling in mechanobiology.

[185]  Shingo Matsumoto,et al.  Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI , 2009, Proceedings of the National Academy of Sciences.

[186]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[187]  D. McDonald,et al.  Cellular abnormalities of blood vessels as targets in cancer. , 2005, Current opinion in genetics & development.

[188]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[189]  Mark Taylor,et al.  Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? , 2015, Journal of biomechanics.

[190]  Paul A. Bates,et al.  Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis , 2009, PLoS Comput. Biol..

[191]  M. Chaplain Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development , 1996 .

[192]  Charles D. Little,et al.  Vascular Morphogenesis: In Vivo, In Vitro, In Mente , 2011, Cardiovascular Molecular Morphogenesis.

[193]  I. Fidler,et al.  AACR centennial series: the biology of cancer metastasis: historical perspective. , 2010, Cancer research.

[194]  H Rieger,et al.  Physical determinants of vascular network remodeling during tumor growth , 2010, The European physical journal. E, Soft matter.

[195]  Gerald Kaiser Wavelet Filtering with the Mellin Transform , 1996 .

[196]  Yuri Bazilevs,et al.  Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion , 2015 .

[197]  Miguel Romance,et al.  New results on computable efficiency and its stability for complex networks , 2006 .

[198]  D-S Lee,et al.  Flow correlated percolation during vascular remodeling in growing tumors. , 2005, Physical review letters.

[199]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[200]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[201]  P. Kevrekidis,et al.  Minimal model for tumor angiogenesis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  J. Zu,et al.  Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys , 2014 .

[203]  H Rieger,et al.  Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. , 2009, Journal of theoretical biology.

[204]  W. Figg,et al.  Angiogenesis : an integrative approach from science to medicine , 2008 .

[205]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[206]  Joe Pitt-Francis,et al.  An integrated approach to quantitative modelling in angiogenesis research , 2015, Journal of The Royal Society Interface.

[207]  Ernesto A. B. F. Lima,et al.  A hybrid ten-species phase-field model of tumor growth , 2014 .

[208]  Aleksander S Popel,et al.  Module-based multiscale simulation of angiogenesis in skeletal muscle , 2011, Theoretical Biology and Medical Modelling.

[209]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[210]  Andreas Deutsch,et al.  Cellular Automaton Models of Tumor Development: a Critical Review , 2002, Adv. Complex Syst..

[211]  D. Peric,et al.  NURBS based least‐squares finite element methods for fluid and solid mechanics , 2015 .

[212]  H. Othmer,et al.  Mathematical modeling of tumor-induced angiogenesis , 2004, Journal of mathematical biology.

[213]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[214]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[215]  P. Maini,et al.  A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. , 1997, IMA journal of mathematics applied in medicine and biology.

[216]  Thomas E. Yankeelov,et al.  Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success , 2016, Annals of Biomedical Engineering.

[217]  P. Wriggers,et al.  Isogeometric large deformation frictionless contact using T-splines , 2014 .

[218]  B. Sleeman,et al.  A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. , 2000, Mathematical biosciences.

[219]  Vincenzo Capasso,et al.  Stochastic modelling of tumour-induced angiogenesis , 2009, Journal of mathematical biology.

[220]  A. Pries,et al.  Resistance to blood flow in microvessels in vivo. , 1994, Circulation research.