Biophysical properties of human antibody variable domains.

[1]  M. Schiffer,et al.  Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains , 2008, Protein science : a publication of the Protein Society.

[2]  P. Wirtz,et al.  Intrabody construction and expression III: Engineering hyperstable VH domains , 2008, Protein science : a publication of the Protein Society.

[3]  A. Plückthun,et al.  Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalizable approach. , 2003, Biochemistry.

[4]  T. Rabbitts,et al.  Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein. , 2002, Journal of molecular biology.

[5]  A. Maritan,et al.  The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. , 2002, Journal of molecular biology.

[6]  A. Plückthun,et al.  Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. , 2002, Biochemistry.

[7]  A. Plückthun,et al.  Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. , 2001, Journal of molecular biology.

[8]  A. Plückthun,et al.  The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains. , 2001, Journal of molecular biology.

[9]  A. Plückthun,et al.  The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. , 2001, Journal of molecular biology.

[10]  A. Plückthun,et al.  The scFv fragment of the antibody hu4D5-8: evidence for early premature domain interaction in refolding. , 2001, Journal of molecular biology.

[11]  A. Plückthun,et al.  Stability engineering of antibody single-chain Fv fragments. , 2001, Journal of molecular biology.

[12]  Andreas Plückthun,et al.  Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display , 2000, Nature Biotechnology.

[13]  E. Söderlind,et al.  Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries , 2000, Nature Biotechnology.

[14]  Lucy J. Holt,et al.  By-passing selection: direct screening for antibody-antigen interactions using protein arrays. , 2000, Nucleic acids research.

[15]  A. Plückthun,et al.  Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. , 2000, Journal of molecular biology.

[16]  A. Plückthun,et al.  Correlation between in Vitro Stability and in Vivo Performance of Anti-GCN4 Intrabodies as Cytoplasmic Inhibitors* , 2000, The Journal of Biological Chemistry.

[17]  F. Stevens,et al.  Four structural risk factors identify most fibril-forming kappa light chains , 2000, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[18]  A. Plückthun,et al.  Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria , 1999, FEBS letters.

[19]  A. Plückthun,et al.  Selection for improved protein stability by phage display. , 1999, Journal of molecular biology.

[20]  A. Plückthun,et al.  High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. , 1999, Cancer research.

[21]  E Ohage,et al.  Intrabody construction and expression. I. The critical role of VL domain stability. , 1999, Journal of molecular biology.

[22]  B. Harris,et al.  Exploiting antibody-based technologies to manage environmental pollution. , 1999, Trends in biotechnology.

[23]  A. Plückthun,et al.  Different equilibrium stability behavior of ScFv fragments: identification, classification, and improvement by protein engineering. , 1999, Biochemistry.

[24]  L. Wyns,et al.  A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. , 1999, Structure.

[25]  C T Verrips,et al.  Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. , 1999, Biochimica et biophysica acta.

[26]  A. Plückthun,et al.  Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen. , 1999, Journal of molecular biology.

[27]  P. Hudson,et al.  Recombinant antibody fragments. , 1998, Current opinion in biotechnology.

[28]  S. D. Grant,et al.  Stabilization of antibody fragments in adverse environments , 1998, Biotechnology and applied biochemistry.

[29]  Niankun Liu,et al.  Synthesis, physicochemical characterization, and crystallization of a putative retro‐coiled coil , 1998, Protein science : a publication of the Protein Society.

[30]  A. Plückthun,et al.  Selection for a periplasmic factor improving phage display and functional periplasmic expression , 1998, Nature Biotechnology.

[31]  A. Fink Protein aggregation: folding aggregates, inclusion bodies and amyloid. , 1998, Folding & design.

[32]  A. Skerra,et al.  Sequence analysis and bacterial production of the anti‐c‐myc antibody 9E10: the VH domain has an extended CDR‐H3 and exhibits unusual solubility , 1997, FEBS letters.

[33]  K. Larsson,et al.  Identification of Framework Residues in a Secreted Recombinant Antibody Fragment That Control Production Level and Localization inEscherichia coli * , 1997, The Journal of Biological Chemistry.

[34]  M. Little,et al.  Two amino acid mutations in an anti-human CD3 single chain Fv antibody fragment that affect the yield on bacterial secretion but not the affinity. , 1997, Protein engineering.

[35]  L. Nieba,et al.  Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. , 1997, Protein engineering.

[36]  A. Plückthun,et al.  Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. , 1997, Journal of immunological methods.

[37]  J. McCafferty,et al.  Antibody engineering: a practical approach , 1997 .

[38]  Lode Wyns,et al.  Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme , 1996, Nature Structural Biology.

[39]  Tristan J. Vaughan,et al.  Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library , 1996, Nature Biotechnology.

[40]  H. Nakamura,et al.  Roles of electrostatic interaction in proteins , 1996, Quarterly Reviews of Biophysics.

[41]  Q. Gu,et al.  Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA , 1996, Journal of bacteriology.

[42]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[43]  C. Pace,et al.  Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding , 1995, Protein science : a publication of the Protein Society.

[44]  P. T. Jones,et al.  Isolation of high affinity human antibodies directly from large synthetic repertoires. , 1994, The EMBO journal.

[45]  R. Poljak,et al.  Structural patterns at residue positions 9, 18, 67 and 82 in the VH framework regions of human and murine immunoglobulins. , 1993, Journal of molecular biology.

[46]  L. Presta,et al.  X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. , 1993, Journal of molecular biology.

[47]  I. Tomlinson,et al.  The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. , 1992, Journal of molecular biology.

[48]  L. Presta,et al.  Humanization of an anti-p185HER2 antibody for human cancer therapy. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Webster,et al.  High-level temperature-induced synthesis of an antibody VH-domain in Escherichia coli using the PelB secretion signal. , 1992, Gene.

[50]  R. Glockshuber,et al.  The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. , 1992, Biochemistry.

[51]  R. Rudolph,et al.  Renaturation, Purification and Characterization of Recombinant Fab-Fragments Produced in Escherichia coli , 1991, Bio/Technology.

[52]  R. Glockshuber,et al.  A comparison of strategies to stabilize immunoglobulin Fv-fragments. , 1990, Biochemistry.

[53]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[54]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Kremmer,et al.  Specific detection of his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. , 1997, BioTechniques.

[56]  Thomas E. Creighton,et al.  Protein structure : a practical approach , 1997 .

[57]  A. Plückthun,et al.  Engineered turns of a recombinant antibody improve its in vivo folding. , 1995, Protein engineering.

[58]  S. Yadav,et al.  MEASURING THE CONFORMATIONAL STABILITY OF PROTEINS , 1992 .

[59]  E. Kabat,et al.  Sequences of proteins of immunological interest , 1991 .

[60]  Pace Cn,et al.  Measuring and increasing protein stability , 1990 .

[61]  C. Pace Measuring and increasing protein stability. , 1990, Trends in biotechnology.