The liquid phase crystallization (LPC) of silicon is an emerging technology for fabricating 10 - 20 µm thin multi-crystalline silicon layers on glass. LPC silicon solar cells exhibit similar electronic performance to multi-crystalline wafer-based devices. Due to the reduced absorber thickness, however, effective measures for light trapping have to be taken. We present tailor-made micro-structures for light trapping at the LPC silicon back-side, whereby a nano-imprinted resist layer serves as a three-dimensional etching mask in subsequent reactive ion etching. Contrary to state-of-the-art random pyramid textures produced by wet-chemical etching, this method allows to produce tailor-made textures independent of grain orientation. Differently shaped micro-textures were replicated in LPC silicon. Absorptance and external quantum efficiency of periodic honeycomb patterns and random pyramids were found to be equivalent. Thus, the method enables the potential to further optimize light trapping in LPC silicon solar cells.