Convex Relaxation Techniques for Segmentation , Stereo and Multiview Reconstruction

1 Convex Relaxation Techniques for Segmentation, Stereo and Multiview Reconstruction 2 1.1 Variational Methods, Partial Differential Equations and Convexity 2 1.2 Image Segmentation and Minimal Partitions 4 1.2.1 Classical Variational Approaches 4 1.2.2 A General Variational Formulation 5 1.2.3 Convex Representation 6 1.2.4 Convex Relaxation 8 1.2.5 Experimental Segmentation Results 9 1.3 Stereo Reconstruction 10 1.3.1 Experimental Stereo Results 11 1.4 Multiple View Reconstruction 13 1.4.1 Experimental Multiview Results 17 1.5 Summary and Conclusion 18

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[3]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[4]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[5]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[9]  John W. Fisher,et al.  Nonparametric methods for image segmentation using information theory and curve evolution , 2002, Proceedings. International Conference on Image Processing.

[10]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[11]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[13]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[14]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[15]  Roberto Cipolla,et al.  Multi-view stereo via volumetric graph-cuts , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[17]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[18]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[19]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, EMMCVPR.

[20]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Daniel Cremers,et al.  An Experimental Comparison of Discrete and Continuous Shape Optimization Methods , 2008, ECCV.

[22]  Daniel Cremers,et al.  TVSeg - Interactive Total Variation Based Image Segmentation , 2008, BMVC.

[23]  Daniel Cremers,et al.  Integration of Multiview Stereo and Silhouettes Via Convex Functionals on Convex Domains , 2008, ECCV.

[24]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[25]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[26]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, International Journal of Computer Vision.

[27]  M. Niethammer,et al.  Continuous maximal flows and Wulff shapes: Application to MRFs , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Thomas Mauthner,et al.  Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV , 2009, EMMCVPR.

[29]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  D. Cremers,et al.  Continuous ratio optimization via convex relaxation with applications to multiview 3D reconstruction , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.