Many human L1 elements are capable of retrotransposition

[1]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[2]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[3]  A. Gabriel,et al.  Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks , 1996, Nature.

[4]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[5]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[6]  J. Boeke,et al.  An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[7]  D. Mager,et al.  A modified indicator gene for selection of retrotransposition events in mammalian cells. , 1994, BioTechniques.

[8]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[9]  J. Boeke,et al.  In-frame linker insertion mutagenesis of yeast transposon Ty1: phenotypic analysis. , 1994, Gene.

[10]  A. F. Scott,et al.  Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Nishio,et al.  Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. , 1993, The Journal of clinical investigation.

[12]  S. Holmes,et al.  Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. , 1992, The Journal of biological chemistry.

[13]  M. Hattori,et al.  Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. , 1992, Nucleic acids research.

[14]  R. Parker,et al.  A rapid method for localized mutagenesis of yeast genes , 1992, Yeast.

[15]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[16]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[17]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[18]  D. Garfinkel,et al.  RNA-mediated recombination in S. cerevisiae , 1991, Cell.

[19]  T. Kunkel,et al.  Efficient site-directed mutagenesis using uracil-containing DNA. , 1991, Methods in enzymology.

[20]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[21]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[22]  J. Spandorfer,et al.  Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma , 1988, Nature.

[23]  J. Skowroński,et al.  Unit-length line-1 transcripts in human teratocarcinoma cells , 1988, Molecular and cellular biology.

[24]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[25]  M F Singer,et al.  LINE-1: a mammalian transposable element. , 1987, Biochimica et biophysica acta.

[26]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[27]  R. Britten,et al.  Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Hutchison,et al.  Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. , 1986, Journal of molecular biology.

[29]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[30]  H. Temin Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. , 1985, Molecular biology and evolution.

[31]  G. Fink,et al.  Ty element transposition: Reverse transcriptase and virus-like particles , 1985, Cell.

[32]  G. Fink,et al.  Ty elements transpose through an RNA intermediate , 1985, Cell.

[33]  G. Grimaldi,et al.  Defining the beginning and end of KpnI family segments. , 1984, The EMBO journal.

[34]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[35]  D. Baltimore,et al.  Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase , 1981, Journal of virology.

[36]  A. Nienhuis,et al.  A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. , 1980, Nucleic acids research.

[37]  G. Fink,et al.  Methods in yeast genetics , 1979 .