Interaction and aggregation of lens crystallins.

[1]  C. Beaulieu,et al.  Oligomerization and conformation change in solutions of calf lens gamma II-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles. , 1990, Biophysical journal.

[2]  W. W. Jong,et al.  Loss of high-affinity membrane binding of bovine nuclear α-crystallin , 1989 .

[3]  L. Takemoto,et al.  Differential binding of α-crystallins to bovine lens membrane , 1989 .

[4]  U. Andley,et al.  Fluorescence studies on the age related changes in bovine and human lens membrane structure. , 1989, Current eye research.

[5]  F. Bettelheim,et al.  Preferential interaction among lens proteins as evidenced from accessibility of crystallins to ammonia gas. , 1988, Experimental eye research.

[6]  M. R. Pelletier,et al.  Fluorescence polarization studies of fluorescein isothiocyanate conjugates of bovine lens crystallins. , 1988, Experimental eye research.

[7]  F. Bettelheim,et al.  Accessibility of low-molecular-weight crystallins to ammonia and hydrogen chloride gases. , 1987, Experimental eye research.

[8]  L. Chylack,et al.  Spectroscopic study on the effects of nonenzymatic glycation in human alpha-crystallin. , 1987, Investigative ophthalmology & visual science.

[9]  S. Bose,et al.  Age-related changes in protein conformation in bovine lens crystallins. , 1985, Experimental eye research.

[10]  R. Siezen,et al.  Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Crabbe,et al.  Chapter 3 – The Lens: Development, Proteins, Metabolism and Cataract , 1984 .

[12]  F. Bettelheim,et al.  Effect of change in concentration upon lens turbidity as predicted by the random fluctuation theory. , 1983, Biophysical journal.

[13]  M. Delaye,et al.  Short-range order of crystallin proteins accounts for eye lens transparency , 1983, Nature.

[14]  B. Chakrabarti,et al.  Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. , 1982, Biochemistry.

[15]  Graeme Wistow,et al.  The molecular structure and stability of the eye lens: X-ray analysis of γ-crystallin II , 1981, Nature.

[16]  J. Wollensak,et al.  The polypeptide chains of α-crystallin from old human eye lenses☆ , 1978 .

[17]  J. Zigler,et al.  A comparative study of β-crystallin from six mammals , 1976 .

[18]  H. Hoenders,et al.  On the quaternary structure of high-molecular-weight proteins from the bovine eye lens. , 1975, European journal of biochemistry.

[19]  S. Ghosh,et al.  Interaction of 1-anilino-8-naphthalene sulphonate with human serum low-density lipoprotein☆ , 1974 .

[20]  A. Spector,et al.  Age-dependent changes in the structure of alpha crystallin. , 1971, Investigative ophthalmology.

[21]  G. Benedek,et al.  Theory of transparency of the eye. , 1971, Applied optics.

[22]  R. F. Chen,et al.  Fluorescent protein-dye conjugates. II. Gamma globulin conjugated with various dyes. , 1969, Archives of biochemistry and biophysics.