Soliton solutions and interactions of the Zakharov-Kuznetsov equation in the electron-positron-ion plasmas

Abstract. Analytically investigated in this paper is the Zakharov-Kuznetsov equation which describes the propagation of the electrostatic excitations in the electron-positron-ion plasmas. By means of the Hirota method and symbolic computation, the bilinear form for the Zakharov-Kuznetsov equation is derived, and then the N-soliton solution is constructed. Parametric analysis is carried out in order to illustrate that the soliton amplitude and width are affected by the phase velocity, ion-to-electron density ratio, rotation frequency and cyclotron frequency. Propagation characteristics and interaction behaviors of the solitons are also discussed through the graphical analysis. The effects of the nonlinearity A, dispersion B and disturbed wave velocity C on the amplitude and velocity of the solitons are derived. First, the amplitude is proportional to the nonlinearity A and inversely proportional to dispersion B. Second, the velocity increases as the dispersion B increases. Third, the velocity increases as the disturbed wave velocity C (4B>C) increases; the velocity decreases as the disturbed wave velocity C (4B

[1]  El-Ashry,et al.  Theory of strong-electromagnetic-wave propagation in an electron-positron-ion plasma. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  S. Vladimirov,et al.  Ion‐acoustic solitons in electron–positron–ion plasmas , 1995 .

[3]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[4]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[5]  S. El-Labany,et al.  Higher-Order Contributions to Dust-Acoustic Waves in a Magnetized Dusty Plasmas , 2002 .

[6]  E. Infeld,et al.  Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas. Part 2. Numerical simulations, two-soliton collisions , 1987 .

[7]  H. Saleem,et al.  Electromagnetic vortices in electron-positron-ion plasmas with shear flow , 2002 .

[8]  H. Shah,et al.  Effects of positron concentration, ion temperature, and plasma β value on linear and nonlinear two-dimensional magnetosonic waves in electron-positron-ion plasmas , 2005 .

[9]  Ji-Huan He Application of homotopy perturbation method to nonlinear wave equations , 2005 .

[10]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[11]  S. Mahmood,et al.  Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas , 2008 .

[12]  A. Mushtaq,et al.  Ion acoustic solitary wave with weakly transverse perturbations in quantum electron-positron-ion plasma , 2007 .

[13]  M. Tabor,et al.  Painlevé expansions for nonintegrable evolution equations , 1989 .

[14]  H. Saleem,et al.  Ion-acoustic envelope solitons in electron-positron-ion plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  F. Michel Theory of pulsar magnetospheres , 1982 .

[16]  Y. Nejoh The effect of the ion temperature on large amplitude ion‐acoustic waves in an electron–positron–ion plasma , 1996 .

[17]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[18]  V. Dubrovsky,et al.  delta -dressing and exact solutions for the (2+1)-dimensional Harry Dym equation , 1994 .

[19]  H. Shah,et al.  Nonlinear Zakharov–Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma , 2005 .

[20]  Xiao-yan Tang,et al.  Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability , 2007 .

[21]  Min Li,et al.  Painlevé integrability and N-soliton solution for the variable-coefficient Zakharov–Kuznetsov equation from plasmas , 2010 .

[22]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[23]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[24]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[25]  F. Rizzato Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas , 1988, Journal of Plasma Physics.

[26]  Miki Wadati Stochastic Korteweg-de Vries Equation , 1983 .

[27]  Yannis Kourakis,et al.  Nonlinear Dynamics of Rotating Multi-Component Pair Plasmas and e-p-i Plasmas , 2009 .

[28]  R. Sabry,et al.  Solitary and blow-up electrostatic excitations in rotating magnetized electron–positron–ion plasmas , 2009 .

[29]  Xing-Biao Hu,et al.  A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Bäcklund transformations and Lax pairs , 2003 .

[30]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[31]  P. Shukla,et al.  Electrostatic mode envelope excitations in e–p–i plasmas—application in warm pair ion plasmas with a small fraction of stationary ions , 2006 .

[32]  M. Wadati,et al.  Simple Derivation of Bäcklund Transformation from Riccati Form of Inverse Method , 1975 .

[33]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[34]  V. Lukash The very early Universe , 1999 .

[35]  S. Mahmood,et al.  Effects of ion streaming and propagation direction on ion-acoustic solitary waves , 2002 .

[36]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[37]  A. Emslie,et al.  The Physics of Solar Flares , 2009 .

[38]  S. Mahmood,et al.  Ion acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas , 2003 .

[39]  Y. Nejoh Effects of positron density and temperature on large amplitude ion-acoustic waves in an electron-positron-ion plasma , 1997 .

[40]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .