暂无分享,去创建一个
[1] Shiwen He,et al. SYM-ILDL , 2015, ACM Trans. Math. Softw..
[2] Hans Zwart,et al. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .
[3] Hans Zwart,et al. Port-Hamiltonian descriptor systems , 2017, 1705.09081.
[4] Murat Manguoglu,et al. A Robust Iterative Scheme for Symmetric Indefinite Systems , 2018, SIAM J. Sci. Comput..
[5] Bora Uçar,et al. Matrix symmetrization and sparse direct solvers , 2020, CSC.
[6] Michele Benzi,et al. Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..
[7] J. Strikwerda. A Generalized Conjugate Gradient Method for Non-Symmetric Systems of Linear Equations. , 1981 .
[8] Daniel B. Szyld. Variational Analysis of Some Conjugate Gradient Methods , 2015 .
[9] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[10] Chen Greif,et al. Iterative Solution of Skew-Symmetric Linear Systems , 2009, SIAM J. Matrix Anal. Appl..
[11] Bora Uçar. Heuristics for a Matrix Symmetrization Problem , 2007, PPAM.
[12] A. J. van der Schaft,et al. Port-Hamiltonian Differential-Algebraic Systems , 2013 .
[13] Yaohang Li,et al. A breakdown-free block conjugate gradient method , 2017 .
[14] Volker Mehrmann,et al. Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .
[15] O. Widlund. A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .
[16] Herbert Egger,et al. Structure preserving approximation of dissipative evolution problems , 2018, Numerische Mathematik.
[17] Froilán M. Dopico,et al. Computing matrix symmetrizers, part 2: New methods using eigendata and linear means; a comparison , 2016 .
[18] Andrew V. Knyazev,et al. Absolute Value Preconditioning for Symmetric Indefinite Linear Systems , 2011, SIAM J. Sci. Comput..
[19] Iain S. Duff,et al. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..
[20] Gerhard Wellein,et al. A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication , 2019, ACM Trans. Parallel Comput..
[21] J. Bunch,et al. Decomposition of a symmetric matrix , 1976 .
[22] Jiang Er-xiong,et al. Algorithm for solving shifted skew-symmetric linear system , 2007 .
[23] Murat Manguoglu,et al. A parallel multithreaded sparse triangular linear system solver , 2020, Comput. Math. Appl..
[24] Cornelis Vuik,et al. A Minimal Residual Method for Shifted Skew-Symmetric Systems , 2007 .
[25] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[26] Arjan van der Schaft,et al. Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..
[27] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[28] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[29] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[30] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..