A two-level iterative scheme for general sparse linear systems based on approximate skew-symmetrizers

We propose a two-level iterative scheme for solving general sparse linear systems. The proposed scheme consists of a sparse preconditioner that increases the skew-symmetric part and makes the main diagonal of the coefficient matrix as close to the identity as possible. The preconditioned system is then solved via a particular Minimal Residual Method for Shifted Skew-Symmetric Systems (mrs). This leads to a two-level (inner and outer) iterative scheme where the mrs has short term recurrences and satisfies an optimally condition. A preconditioner for the inner system is designed via a skew-symmetry preserving deflation strategy based on the skew-Lanczos process. We demonstrate the robustness of the proposed scheme on sparse matrices from various applications.

[1]  Shiwen He,et al.  SYM-ILDL , 2015, ACM Trans. Math. Softw..

[2]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[3]  Hans Zwart,et al.  Port-Hamiltonian descriptor systems , 2017, 1705.09081.

[4]  Murat Manguoglu,et al.  A Robust Iterative Scheme for Symmetric Indefinite Systems , 2018, SIAM J. Sci. Comput..

[5]  Bora Uçar,et al.  Matrix symmetrization and sparse direct solvers , 2020, CSC.

[6]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[7]  J. Strikwerda A Generalized Conjugate Gradient Method for Non-Symmetric Systems of Linear Equations. , 1981 .

[8]  Daniel B. Szyld Variational Analysis of Some Conjugate Gradient Methods , 2015 .

[9]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[10]  Chen Greif,et al.  Iterative Solution of Skew-Symmetric Linear Systems , 2009, SIAM J. Matrix Anal. Appl..

[11]  Bora Uçar Heuristics for a Matrix Symmetrization Problem , 2007, PPAM.

[12]  A. J. van der Schaft,et al.  Port-Hamiltonian Differential-Algebraic Systems , 2013 .

[13]  Yaohang Li,et al.  A breakdown-free block conjugate gradient method , 2017 .

[14]  Volker Mehrmann,et al.  Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .

[15]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[16]  Herbert Egger,et al.  Structure preserving approximation of dissipative evolution problems , 2018, Numerische Mathematik.

[17]  Froilán M. Dopico,et al.  Computing matrix symmetrizers, part 2: New methods using eigendata and linear means; a comparison , 2016 .

[18]  Andrew V. Knyazev,et al.  Absolute Value Preconditioning for Symmetric Indefinite Linear Systems , 2011, SIAM J. Sci. Comput..

[19]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[20]  Gerhard Wellein,et al.  A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication , 2019, ACM Trans. Parallel Comput..

[21]  J. Bunch,et al.  Decomposition of a symmetric matrix , 1976 .

[22]  Jiang Er-xiong,et al.  Algorithm for solving shifted skew-symmetric linear system , 2007 .

[23]  Murat Manguoglu,et al.  A parallel multithreaded sparse triangular linear system solver , 2020, Comput. Math. Appl..

[24]  Cornelis Vuik,et al.  A Minimal Residual Method for Shifted Skew-Symmetric Systems , 2007 .

[25]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[26]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[27]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[28]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[29]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[30]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..