An iterative updating method for undamped structural systems

Finite element model updating is a procedure to minimize the differences between analytical and experimental results and can be mathematically reduced to solving the following problem. Problem P: Let Ma∈SRn×n and Ka∈SRn×n be the analytical mass and stiffness matrices and Λ=diag{λ1,…,λp}∈Rp×p and X=[x1,…,xp]∈Rn×p be the measured eigenvalue and eigenvector matrices, respectively. Find $(\hat{M}, \hat{K}) \in \mathcal{S}_{MK}$ such that $\| \hat{M}-M_{a} \|^{2}+\| \hat{K}-K_{a}\|^{2}= \min_{(M,K) \in {\mathcal{S}}_{MK}} (\| M-M_{a} \|^{2}+\|K-K_{a}\|^{2})$, where $\mathcal{S}_{MK}=\{(M,K)| X^{T}MX=I_{p}, MX \varLambda=K X \}$ and ∥⋅∥ is the Frobenius norm. This paper presents an iterative method to solve Problem P. By the method, the optimal approximation solution $(\hat{M}, \hat{K})$ of Problem P can be obtained within finite iteration steps in the absence of roundoff errors by choosing a special kind of initial matrix pair. A numerical example shows that the introduced iterative algorithm is quite efficient.

[1]  Mehdi Dehghan,et al.  An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices , 2010 .

[2]  Yeong-Bin Yang,et al.  A new direct method for updating structural models based on measured modal data , 2009 .

[3]  C. A. Morales L-shaped structure mass and stiffness matrices by substructure synthesis , 2010 .

[4]  Danilo Capecchi,et al.  Modal Model Identification with Unknown Nonstationary Base Motion , 2004 .

[5]  Fu-Shang Wei,et al.  Mass and stiffness interaction effects in analytical model modification , 1990 .

[6]  F. Wei,et al.  Stiffness matrix correction from incomplete test data , 1980 .

[7]  Guoliang Chen,et al.  An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB+CYD=E , 2010, J. Comput. Appl. Math..

[8]  Fu-Shang Wei,et al.  Analytical dynamic model improvement using vibration test data , 1990 .

[9]  Antonio Ruiz,et al.  Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors , 2010 .

[10]  A. Berman,et al.  Improvement of a Large Analytical Model Using Test Data , 1983 .

[11]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[12]  Alex Berman,et al.  Mass Matrix Correction Using an Incomplete Set of Measured Modes , 1979 .

[13]  B. Datta,et al.  An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint , 2009 .

[14]  Wen-Wei Lin,et al.  Quadratic Model Updating with Symmetry, Positive Definiteness, and No Spill-Over , 2009, SIAM J. Matrix Anal. Appl..

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  Yongxin Yuan,et al.  A model updating method for undamped structural systems , 2008 .

[17]  M. Baruch Optimal correction of mass and stiffness matrices using measured modes , 1982 .

[18]  John E. Mottershead,et al.  A Method for Determining Model‐Structure Errors and for Locating Damage in Vibrating Systems , 1999 .

[19]  Menahern Baruch,et al.  Optimal Weighted Orttiogonalization of Measured Modes , 1978 .

[20]  Biswa Nath Datta,et al.  A direct method for model updating with incomplete measured data and without spurious modes , 2007 .

[21]  Mao-lin Liang,et al.  An efficient algorithm for the generalized centro-symmetric solution of matrix equation A X B = C , 2007, Numerical Algorithms.

[22]  Marcos Raydan,et al.  A symmetry preserving alternating projection method for matrix model updating , 2009 .

[23]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .