Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma.

[1]  Zhiwei Wang,et al.  SCFβ-TRCP promotes cell growth by targeting PR-Set7/Set8 for degradation , 2015, Nature Communications.

[2]  P. Raman,et al.  A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. , 2015, Cancer cell.

[3]  A. Harris,et al.  The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. , 2015, Journal of the National Cancer Institute.

[4]  Benjamin G. Bitler,et al.  Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers , 2015, Nature Medicine.

[5]  G. Selivanova,et al.  Pharmacological reactivation of p53 as a strategy to treat cancer , 2015, Journal of internal medicine.

[6]  Kyle V. Butler,et al.  Structure-activity relationship studies of SETD8 inhibitors. , 2014, MedChemComm.

[7]  David Shum,et al.  Small-Molecule Inhibitors of SETD8 with Cellular Activity , 2014, ACS chemical biology.

[8]  Kyle V. Butler,et al.  Discovery of a Selective, Substrate-Competitive Inhibitor of the Lysine Methyltransferase SETD8 , 2014, Journal of medicinal chemistry.

[9]  R. Boldrini,et al.  Galectin-3 is a marker of favorable prognosis and a biologically relevant molecule in neuroblastic tumors , 2014, Cell Death and Disease.

[10]  Eugene S. Kim,et al.  Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. , 2014, Cancer research.

[11]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[12]  Giovanni Roti,et al.  Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. , 2013, Chemistry & biology.

[13]  M. Galka,et al.  Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis. , 2013, Molecular cell.

[14]  K. Stegmaier,et al.  Targeting MYCN in neuroblastoma by BET bromodomain inhibition. , 2013, Cancer discovery.

[15]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[16]  Giovanni Parmigiani,et al.  Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma , 2012, Nature Genetics.

[17]  G. Giannini,et al.  Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma , 2012, Front. Oncol..

[18]  C. Thiele,et al.  Epigenetic Changes in Pediatric Solid Tumors: Promising New Targets , 2012, Clinical Cancer Research.

[19]  B. Ponder,et al.  Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. , 2012, Cancer research.

[20]  H. Hakonarson,et al.  Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. , 2012, Cancer research.

[21]  C. Bountra,et al.  Epigenetic protein families: a new frontier for drug discovery , 2012, Nature Reviews Drug Discovery.

[22]  Jinghui Zhang,et al.  Association of age at diagnosis and genetic mutations in patients with neuroblastoma. , 2012, JAMA.

[23]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[24]  Danny Reinberg,et al.  PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. , 2012, Genes & development.

[25]  Xiao Han,et al.  SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities , 2012, The EMBO journal.

[26]  F. Westermann,et al.  Functional Analysis of the p53 Pathway in Neuroblastoma Cells Using the Small-Molecule MDM2 Antagonist Nutlin-3 , 2011, Molecular Cancer Therapeutics.

[27]  Nazneen Rahman,et al.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene , 2011, Nature.

[28]  J. Rice,et al.  A new regulator of the cell cycle , 2011, Cell cycle.

[29]  M. Kirschner,et al.  Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. , 2010, Genes & development.

[30]  Scott L Pomeroy,et al.  Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. , 2010, Cancer cell.

[31]  J. Maris Recent advances in neuroblastoma. , 2010, The New England journal of medicine.

[32]  M. Wolf,et al.  Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication , 2010, BMC Cancer.

[33]  Zhe Zhang,et al.  Serial transcriptome analysis and cross-species integration identifies centromere-associated protein E as a novel neuroblastoma target. , 2010, Cancer research.

[34]  F. Speleman,et al.  Escape from p53-mediated tumor surveillance in neuroblastoma: switching off the p14ARF-MDM2-p53 axis , 2009, Cell Death and Differentiation.

[35]  Ruth Ladenstein,et al.  Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  R. Versteeg,et al.  Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. , 2009, Cancer research.

[37]  K. Matthay,et al.  Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  F. Speleman,et al.  Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. , 2009, Cancer letters.

[39]  M. Malumbres,et al.  Genomic stability and tumour suppression by the APC/C cofactor Cdh1 , 2008, Nature Cell Biology.

[40]  Or Gozani,et al.  Modulation of p53 function by SET8-mediated methylation at lysine 382. , 2007, Molecular cell.

[41]  B. Hero,et al.  Neuroblastoma , 2007, The Lancet.

[42]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[43]  H. Ding,et al.  Bmi-1 Regulates the Differentiation and Clonogenic Self-renewal of I-type Neuroblastoma Cells in a Concentration-dependent Manner* , 2006, Journal of Biological Chemistry.

[44]  F. Speleman,et al.  Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. , 2006, Cancer research.

[45]  Y. Suh,et al.  HUlip, a human homologue of unc-33-like phosphoprotein of Caenorhabditis elegans; Immunohistochemical localization in the developing human brain and patterns of expression in nervous system tumors , 2005, Journal of Neuro-Oncology.

[46]  J. Lunec,et al.  The p53 pathway and its inactivation in neuroblastoma. , 2003, Cancer letters.

[47]  J. Khan,et al.  EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. , 2012, Cancer research.