Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials

The never-ending race towards miniaturization of devices induced an intense research in the manufacturing processes of the components of those devices. However, the complexity of the process combined with high equipment costs makes the conventional lithographic techniques unfavorable formany researchers. Through years, nanosphere lithography (NSL) attracted growing interest due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures. This method combines the advantages of both top-down and bottom-up approaches and is based on a two-step process: (1) the preparation of a colloidal crystal mask (CCM) made of nanospheres and (2) the deposition of the desired material through the mask. The mask is then removed and the layer keeps the ordered patterning of the mask interstices. Many groups have been working to improve the quality of the CCMs. Throughout this review, we compare the major deposition techniques to manufacture the CCMs (focusing on 2D polystyrene nanospheres lattices), with respect to their advantages and drawbacks. In traditional NSL, the pattern is usually limited to triangular structures. However, new strategies have been developed to build up more complex architectures and will also be discussed.

[1]  Pengfei Wu,et al.  Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes , 2003 .

[2]  S. Chua,et al.  Formation of nanoimprinting mould through use of nanosphere lithography , 2006 .

[3]  K. Nagayama,et al.  Effect of growth conditions on the structure of two-dimensional latex crystals: experiment , 1999 .

[4]  W. Cai,et al.  Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices , 2011 .

[5]  Liang Li,et al.  Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications , 2011 .

[6]  George M. Whitesides,et al.  New Approaches to Nanofabrication: Molding, Printing, and Other Techniques , 2005 .

[7]  E. Meyer,et al.  High resolution magnetic force microscopy , 1990 .

[8]  La-bao Zhang,et al.  Rapid self-assembly of submicrospheres at liquid surface by controlling evaporation and its mechanism. , 2007, Journal of colloid and interface science.

[9]  Yoshio Kobayashi,et al.  Multiformity of particle arrays assembled with a simple dip-coating , 2007 .

[10]  M. Himmelhaus,et al.  Self-assembly of polystyrene nano particles into patterns of random-close-packed monolayers via chemically induced adsorption , 2002 .

[11]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[12]  Yuebing Zheng,et al.  Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE , 2004 .

[13]  Yue-liang Zhou,et al.  Nonlinear optical properties of Au/ZnO nanoparticle arrays , 2008 .

[14]  Huaiwu Zhang,et al.  Fabrication of submicron magnetic oxide antidot arrays by combining nanosphere lithography with sputtering technology , 2008 .

[15]  Ricardo Garcia,et al.  Nano-chemistry and scanning probe nanolithographies. , 2006, Chemical Society reviews.

[16]  Y. Liao,et al.  Enhance the structural stability of the FePt nanoparticle monolayer by adding gold overlayer , 2006 .

[17]  P. Kralchevsky,et al.  Capillary forces and structuring in layers of colloid particles , 2001 .

[18]  H. Hofmann,et al.  Self-organisation of colloidal nanoparticles , 2004 .

[19]  M. Gower,et al.  157-nm lithography with high numerical aperture lens for sub-70 nm node , 2003 .

[20]  P. Pieranski,et al.  Two-Dimensional Interfacial Colloidal Crystals , 1980 .

[21]  Gang Zhang,et al.  Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography. , 2008, Journal of the American Chemical Society.

[22]  M. Pileni,et al.  Self assemblies of nanocrystals: preparation, collective properties and uses. , 2004, Faraday discussions.

[23]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[24]  W. Cai,et al.  Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals† , 2008 .

[25]  Sarah Kim,et al.  Nanopatterned magnetic metal via colloidal lithography with reactive ion etching , 2004 .

[26]  Chunxu Wang,et al.  Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-free Langmuir-Blodgett Technique , 2007 .

[27]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[28]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[29]  Nicholas A. Kotov,et al.  Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals , 2000 .

[30]  Paul Mulvaney,et al.  Preparation of ordered colloid monolayers by electrophoretic deposition , 1993 .

[31]  Chad A. Mirkin,et al.  A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays , 2002 .

[32]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  George M. Whitesides,et al.  UNCONVENTIONAL NANOFABRICATION , 2004 .

[34]  Hsuen‐Li Chen,et al.  Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. , 2007, Optics express.

[35]  Christy L. Haynes,et al.  Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing , 2002 .

[36]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[37]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[38]  T. Rehg,et al.  Spin coating of colloidal suspensions , 1992 .

[39]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[40]  R. Cloots,et al.  Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method? , 2011, Langmuir : the ACS journal of surfaces and colloids.

[41]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[42]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[43]  Jau-Ye Shiu,et al.  Fabrication of Large‐Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks , 2003 .

[44]  Feodor Y Ogrin,et al.  Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[45]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[46]  W. A. Murray,et al.  Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  Jens-Christian Meiners,et al.  Chemically functionalized surfaces from ultrathin block-copolymer films , 1996 .

[48]  Petros Stavroulakis,et al.  Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly , 2009 .

[49]  Xuezhong Wu,et al.  Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating , 2013 .

[50]  Xinsheng Peng,et al.  Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles , 2011 .

[51]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[52]  W. Cai,et al.  Controllable Fabrication and Tunable Magnetism of Nickel Nanostructured Ordered Porous Arrays , 2009 .

[53]  E. Sargent,et al.  Colloidal Crystals Grown on Patterned Surfaces , 2004 .

[54]  D. Boyd,et al.  Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures , 2010 .

[55]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[56]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[57]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[58]  I. Schuller,et al.  Ordered magnetic nanostructures: fabrication and properties , 2003 .

[59]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[60]  Kunji Chen,et al.  Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography , 2007 .

[61]  D. A. Saville,et al.  Field-Induced Layering of Colloidal Crystals , 1996, Science.

[62]  Zhe Yuan,et al.  Plasmonic properties of supported Pt and Pd nanostructures. , 2006, Nano letters.

[63]  Christophe Thibault Impression de biomolécules par lithographie douce, applications pour les biopuces,de l’échelle micrométrique à nanométrique , 2007 .

[64]  Amanda Martinez-Gil Nanostructuration de surfaces de silicium pour guider la croissance auto-organisée de nanostructures métalliques , 2005 .

[65]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[66]  Shuyan Gao,et al.  Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity , 2009 .

[67]  S. Middleman The effect of induced air‐flow on the spin coating of viscous liquids , 1987 .

[68]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[69]  Dayang Wang,et al.  Colloidal lithography--the art of nanochemical patterning. , 2009, Chemistry, an Asian journal.

[70]  C. Ober,et al.  Recent progress in high resolution lithography , 2006 .

[71]  F. Sun,et al.  Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications , 2006 .

[72]  G. Krausch,et al.  Nanostructured Thin Films via Self‐Assembly of Block Copolymers , 2002 .

[73]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[74]  R. Cloots,et al.  Nanosphere lithography and hydrothermal growth: how to increase the surface area and control reversible wetting properties of ZnO nanowire arrays? , 2012 .

[75]  Michael J McFarland,et al.  Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. , 2004, Journal of the American Chemical Society.

[76]  Y. Bando,et al.  Periodic TiO2 Nanorod Arrays with Hexagonal Nonclose‐Packed Arrangements: Excellent Field Emitters by Parameter Optimization , 2009 .

[77]  Dong F. Wang,et al.  505 Fabrication of micro and nanostructures using self-assembly , 2009 .

[78]  John L. Anderson,et al.  Particle Clustering and Pattern Formation during Electrophoretic Deposition: A Hydrodynamic Model , 1997 .

[79]  Hangsheng Yang,et al.  Filtration-assembling colloidal crystal templates for ordered macroporous nanoparticle films , 2011 .

[80]  H. Deckman,et al.  Applications of surface textures produced with natural lithography , 1983 .

[81]  D. Son,et al.  Evaporation-induced assembly of quantum dots into nanorings. , 2009, ACS nano.

[82]  Witold Kandulski,et al.  Shadow Nanosphere Lithography , 2007 .

[83]  Ch. Martin Développement, par une approche mixte top-down / bottom-up, de dispositifs planaires pour la nanoélectronique , 2005 .

[84]  I. B. Ivanov,et al.  Mechanism of formation of two-dimensional crystals from latex particles on substrates , 1992 .

[85]  M. Giersig,et al.  Nanosphere Lithography — Fabrication of Various Periodic Magnetic Particle Arrays Using Versatile Nanosphere Masks , 2003 .

[86]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[87]  Yadong Yin,et al.  Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures , 2003 .

[88]  Ursula Ebels,et al.  Large-scale, 2D arrays of magnetic nanoparticles , 2003 .

[89]  Luke P. Lee,et al.  Optical properties of the crescent-shaped nanohole antenna. , 2009, Nano letters.

[90]  David W. M. Marr,et al.  Electrically Switchable Colloidal Ordering in Confined Geometries , 2001 .

[91]  Ming X. Tan,et al.  Size-dependent electrical behavior of spatially inhomogeneous barrier height regions on silicon , 2000 .

[92]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[93]  R. Feynman There’s plenty of room at the bottom , 2011 .

[94]  K. Stebe,et al.  Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[95]  H. Fredriksson,et al.  Hole–Mask Colloidal Lithography , 2007 .

[96]  R. Palmer,et al.  RAPID COMMUNICATION: Fabrication of ordered arrays of silicon nanopillars at selected sites , 2002 .

[97]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[98]  Xiaozhou Ye,et al.  Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications , 2011 .

[99]  Yoshiki Shimizu,et al.  Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. , 2008, Journal of the American Chemical Society.

[100]  Michael Giersig,et al.  Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. , 2005, Small.

[101]  H. Takei and,et al.  Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres , 1997 .

[102]  Shuyan Gao,et al.  Unconventional lithography for hierarchical micro-/nanostructure arrays with well-aligned 1D crystalline nanostructures: design and creation based on the colloidal monolayer. , 2009, ACS applied materials & interfaces.

[103]  O. Velev,et al.  Two-dimensional crystallization of microspheres by a coplanar AC electric field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[104]  R. V. Duyne,et al.  Nanosphere lithography fabricated plasmonic materials and their applications , 2006 .

[105]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[106]  Shinji Okazaki,et al.  Resolution limits of optical lithography , 1991 .

[107]  M. Ohtsu,et al.  A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles , 1995 .

[108]  Jau-Ye Shiu,et al.  Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays , 2003 .

[109]  Massimo Lazzari,et al.  Block Copolymers as a Tool for Nanomaterial Fabrication , 2003 .

[110]  R. Cloots,et al.  Microstructural evolution of a TiO2 mesoporous single layer film under calcination: Effect of stabilization and repeated thermal treatments on the film crystallization and surface area , 2012 .

[111]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[112]  Leonid M. Goldenberg,et al.  Simple method for the preparation of colloidal particle monolayers at the water/alkane interface , 2002 .

[113]  R. Feynman There's plenty of room at the bottom , 1999 .

[114]  Bai Yang,et al.  Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings , 2009 .

[115]  B. Ocko,et al.  Large-scale fabrication of protein nanoarrays based on nanosphere lithography. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[116]  C. Lim,et al.  Size selective assembly of colloidal particles on a template by directed self-assembly technique. , 2006, Langmuir : the ACS journal of surfaces and colloids.