Fractal spacetime structure in asymptotically safe gravity

Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.

[1]  C. Wetterich,et al.  Running gauge coupling in three dimensions and the electroweak phase transition , 1993 .

[2]  J. Moffat,et al.  Gravitational theory, galaxy rotation curves and cosmology without dark matter , 2004, astro-ph/0412195.

[3]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[4]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[5]  Renormalization and asymptotic safety in truncated quantum Einstein gravity , 2002, hep-th/0207143.

[6]  Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.

[7]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[8]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[9]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[10]  S. Adler Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .

[11]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[12]  Dimensionally reduced gravity theories are asymptotically safe , 2003, hep-th/0304117.

[13]  Ambjorn,et al.  Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.

[14]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[15]  M. Reuter Renormalization of the topological charge in Yang-Mills theory , 1996 .

[16]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[17]  C. Wetterich,et al.  Average action for the Higgs model with abelian gauge symmetry , 1993 .

[18]  J. Jurkiewicz,et al.  Semiclassical universe from first principles , 2004, hep-th/0411152.

[19]  C. Wetterich Effective average action in statistical physics and quantum field theory , 2001 .

[20]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[21]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[22]  A. Bonanno,et al.  Proper time flow equation for gravity , 2005 .

[23]  Galaxy cluster masses without non-baryonic dark matter , 2005, astro-ph/0507222.

[24]  S. Sengupta,et al.  Accelerating Universe without Bigbang Singularity in Kalb-Ramond Cosmology , 2002 .

[25]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[26]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[27]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[28]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[29]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[30]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[31]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[32]  M. Reuter,et al.  Running Newton constant, improved gravitational actions, and galaxy rotation curves , 2004 .

[33]  Shlomo Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Diffusion in the Sierpinski gasket , 2000 .

[34]  Fractal geometry of quantum spacetime at large scales , 1998, hep-th/9808070.

[35]  A. Bonanno,et al.  Cosmological Perturbations in Renormalization Group Derived Cosmologies , 2004 .

[36]  Reconstructing the universe , 2005, hep-th/0505154.

[37]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .

[38]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[39]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[40]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[41]  J. Ambjorn Simplicial Euclidean and Lorentzian Quantum Gravity , 2002, gr-qc/0201028.

[42]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[43]  R. Loll,et al.  A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.

[44]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[45]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[46]  M. Reuter,et al.  Renormalization group improved gravitational actions: A Brans-Dicke approach , 2004 .

[47]  The renormalization group, systems of units and the hierarchy problem , 2004, hep-th/0409199.

[48]  M. Grisaru,et al.  Background-field method versus normal field theory in explicit examples: One-loop divergences in the S matrix and Green's functions for Yang--Mills and gravitational fields , 1975 .

[49]  M. Reuter,et al.  From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.

[50]  E. Bentivegna,et al.  Confronting the IR Fixed Point Cosmology with High Redshift Supernova Data , 2003 .

[51]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[52]  Reuter Effective average action of Chern-Simons field theory. , 1996, Physical review. D, Particles and fields.

[53]  R. Loll,et al.  Discrete Lorentzian Quantum Gravity , 2000, hep-th/0011194.

[54]  E. Bentivegna,et al.  Confronting the IR fixed point cosmology with high-redshift observations , 2003 .

[55]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[56]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[57]  M. Niedermaier On the Renormalization of Truncated Quantum Einstein Gravity , 2022 .

[58]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[59]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[60]  Janos Polonyi,et al.  Lectures on the functional renormalization group method , 2001, hep-th/0110026.

[61]  J. Brownstein,et al.  Galaxy Rotation Curves without Nonbaryonic Dark Matter , 2005, astro-ph/0506370.

[62]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .