Thermal effects and cavity solitons in passive semiconductor microresonators

We formulate a model including the thermal dynamics in the time evolution of a passive semiconductor microresonator, containing a bulk medium, driven by a coherent holding beam. Thermal effects are taken into account via a dynamical equation for the lattice temperature, describing heat dissipation toward the environment, heating due to carrier generation, and thermal diffusion. The temperature dynamics is coupled to the carrier and field dynamics via the material susceptibility, a red-shift of the band-gap energy of the semiconductor upon an increase of temperature and a linear shift of the cavity resonance. The presence of thermal effects introduces a Hopf instability which, in certain regions of the parameter space, dominates the dynamics of the system. In this case our numerical simulations show that the output intensity may oscillate for constant holding beam intensity (regenerative oscillations), and if the input intensity grows slowly enough the hysteresis cycle may be inverted (switching point inversion). Oscillatory instabilities can also develop a modulational character, meaning that travelling patterns can be found. These phenomena develop over the slow timescale (microseconds) characterizing thermal effects in these devices. In other parameter regimes, the well-known Turing instability giving rise to stationary modulated patterns prevails, and the system displays the usual scenario of stable patterns and cavity solitons. Thermal effects seem not to play any relevant role in these regimes.

[1]  V. Taranenko,et al.  Semiconductor resonator solitons above bandgap , 2001, nlin/0105018.

[2]  R. Lefever,et al.  Localized structures and localized patterns in optical bistability. , 1994, Physical review letters.

[3]  U. Peschel,et al.  Incoherent switching between multistable cavity solitons in a semiconductor optical resonator. , 1998, Optics letters.

[4]  C. O. Weiss,et al.  Spatio-temporal structures. Part II. Vortices and defects in lasers , 1992 .

[5]  F. T. Arecchi,et al.  Space-time complexity in nonlinear optics , 1991 .

[6]  H. Gibbs,et al.  Regenerative pulsations from an intrinsic bistable optical device , 1982 .

[7]  Lorenzo Spinelli,et al.  Thermal effects and transverse structures in semiconductor microcavities with population inversion , 2002 .

[8]  Gibbs,et al.  Kaleidoscopic spatial instability: Bifurcations of optical transverse solitary waves. , 1991, Physical review letters.

[9]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[10]  W. J. Firth,et al.  Pattern Formation in Passive Nonlinear Optical Systems , 1995 .

[11]  W. Wiegmann,et al.  Room‐temperature excitonic optical bistability in a GaAs‐GaAlAs superlattice étalon , 1982 .

[12]  H. Gibbs,et al.  Transverse optical bistabilities and instabilities , 1985 .

[13]  Lorenzo Spinelli,et al.  Spatio-temporal dynamics in semiconductor microresonators with thermal effects. , 2002, Optics express.

[14]  Lorenzo Spinelli,et al.  SPATIAL SOLITONS IN SEMICONDUCTOR MICROCAVITIES , 1998 .

[15]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[16]  Alessandra Gatti,et al.  Optical Pattern Formation , 1999 .

[17]  Hyatt M. Gibbs,et al.  Role of Diffractive Coupling and Self-Focusing or Defocusing in the Dynamical Switching of a Bistable Optical Cavity , 1982 .

[18]  Jerome V. Moloney,et al.  Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity , 1983 .

[19]  L. Lugiato Transverse nonlinear optics: Introduction and review , 1994 .

[20]  Ulf Peschel,et al.  SOLITARY WAVES IN QUADRATICALLY NONLINEAR RESONATORS , 1997 .

[21]  H. Mackenzie,et al.  Regenerative pulsations in an InSb bistable etalon , 1986 .

[22]  Lange,et al.  Interaction of localized structures in an optical pattern-forming system , 2000, Physical review letters.

[23]  Lorenzo Spinelli,et al.  Spatial Soliton Pixels in Semiconductor Devices , 1997 .

[24]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[25]  Cun-Zheng Ning,et al.  Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers , 1998 .

[26]  A J Scroggie,et al.  Self-propelled cavity solitons in semiconductor microcavities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Samuel L. McCall,et al.  Instability and regenerative pulsation phenomena in Fabry‐Perot nonlinear optic media devices , 1978 .

[28]  Ulf Peschel,et al.  Multistable localized structures and superlattices in semiconductor optical resonators , 1997 .

[29]  Salvador Balle,et al.  Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  L. Lugiato,et al.  Spatio-temporal structures. Part I , 1992 .

[31]  Kestutis Staliunas,et al.  Localized structures in degenerate optical parametric oscillators , 1997 .

[32]  Kestutis Staliunas,et al.  Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator , 1997 .

[33]  K. Staliunas,et al.  Solitons and vortices in lasers , 1999 .

[34]  D. Z. Anderson,et al.  Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator. , 1994, Optics letters.

[35]  L. Lugiato,et al.  Thermal instabilities in semiconductor amplifiers , 2002 .

[36]  Lorenzo Spinelli,et al.  Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical properties and control , 1999 .

[37]  Germany,et al.  Patterns and localized structures in bistable semiconductor resonators , 2000, nlin/0001055.

[38]  E. Abraham Modelling of regenerative pulsations in an InSb etalon , 1987 .

[39]  Lorenzo Spinelli,et al.  Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities , 1999 .

[40]  Theo T. Tschudi,et al.  Experimental investigation of solitary structures in a nonlinear optical feedback system , 1997 .

[41]  Firth,et al.  Optical bullet holes: Robust controllable localized states of a nonlinear cavity. , 1996, Physical review letters.

[42]  Lorenzo Spinelli,et al.  Thermal and electronic nonlinearities in semiconductor cavities , 2001, SPIE OPTO.

[43]  M. Brambilla,et al.  First principle theory for cavity solitons in semiconductor microresonators , 2000 .