A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests

A generalized logistic model of individual tree mortality was developed for trembling aspen ( Populus tremuloides Michx.), white spruce (Picea glauca (Moench) Voss), and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) in Alberta boreal mixedwood forests based on an empirical data base of permanent sample plots. The model is suitable for observations from unequal remeasurement intervals. The maximum likelihood estimation was used to fit the model, the likelihood ratio test was combined with our understanding of mortality process to select the important variables, and the Hosmer-Lemeshow goodness-of-fit test was conducted to evaluate the fit. The fitted model predicts the survival probability of an individual tree based on the tree diameter at breast height, annual diameter incre- ment, stand basal area, species composition, and site productivity. Resume : Un modele logistique generalise de mortalite des tiges individuelles a ete developpe pour le peuplier faux- tremble (Populus tremuloides Michx.), l'epinette blanche (Picea glauca (Moench) Voss) et le pin lodgepole (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) dans les forets mixtes boreales de l'Alberta, a l'aide d'une base de donnees empiriques provenant de parcelles permanentes. L'estimation du maximum de vraisemblance a ete utilisee pour ajuster le modele. Le test du ratio de vraisemblance a ete combine a notre comprehension du processus de mortalite pour choisir les variables importantes et le test de qualite de l'ajustement de Hosmer-Lemeshow a ete applique pour evaluer la qualite de l'ajustement du modele. Le modele ajuste predit la probabilite de survie d'un arbre sur la base du

[1]  David A. Hamilton,et al.  Modeling the probability of individual tree mortality , 1976 .

[2]  John W. Moser,et al.  Dynamics of an Uneven-Aged Forest Stand , 1972 .

[3]  David A. Hamilton,et al.  A Logistic Model of Mortality in Thinned and Unthinned Mixed Conifer Stands of Northern Idaho , 1986, Forest Science.

[4]  R. G. Buchman,et al.  A tree survival model with application to species of the Great Lakes region , 1983 .

[5]  Richard H. Waring,et al.  Characteristics of Trees Predisposed to Die , 1987 .

[6]  M. G. Ryan,et al.  Hydraulic Limits to Tree Height and Tree Growth , 1997 .

[7]  Chris J. Cieszewski,et al.  The stand dynamics of lodgepole pine , 1988 .

[8]  Robert A. Monserud,et al.  Simulation of forest tree mortality , 1976 .

[9]  S. Huang,et al.  An index of site productivity for uneven-aged or mixed-species stands , 1993 .

[10]  R. Hicks,et al.  Predicting mortality in mixed oak stands following spring insect defoliation. , 1990 .

[11]  E. B. Peterson,et al.  Ecology, management, and use of aspen and balsam poplar in the Prairie Provinces, Canada , 1992 .

[12]  R. G. Oderwald,et al.  Predicting mortality with a Weibull distribution. , 1980 .

[13]  K. Rennolls,et al.  Timber Management-A Quantitative Approach. , 1984 .

[14]  A. Ek Nonlinear Models for Stand Table Projection in Northern Hardwood Stands , 1974 .

[15]  Richard H. Waring,et al.  Forest Ecosystems: Concepts and Management , 1985 .

[16]  David A. Hamilton,et al.  Extending the range of applicability of an individual tree mortality model. , 1990 .

[17]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[18]  Y. Lee,et al.  Predicting mortality for even-aged stands of lodgepole pine , 1971 .

[19]  G. Wang Is height of dominant trees at a reference diameter an adequate measure of site quality , 1998 .

[20]  J. Dennis,et al.  Two new unconstrained optimization algorithms which use function and gradient values , 1979 .

[21]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .