Inductive, Evolutionary, and Neural Computing Techniques for Discrimination: A Comparative Study*

This paper provides a comparative study of machine learning techniques for two-group discrimination. Simulated data is used to examine how the different learning techniques perform with respect to certain data distribution characteristics. Both linear and nonlinear discrimination methods are considered. The data has been previously used in the comparative evaluation of a number of techniques and helps relate our findings across a range of discrimination techniques.

[1]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[2]  Wullianallur Raghupathi,et al.  A neural network application for bankruptcy prediction , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[3]  Prakash L. Abad,et al.  New LP based heuristics for the classification problem , 1993 .

[4]  Fred Glover,et al.  Applications and Implementation , 1981 .

[5]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[6]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[7]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[8]  Bruce W. Suter,et al.  The multilayer perceptron as an approximation to a Bayes optimal discriminant function , 1990, IEEE Trans. Neural Networks.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Suran Asitha Goonatilake,et al.  Intelligent Systems for Finance and Business , 1995 .

[12]  Mark S. Silver,et al.  Rule‐Based Expert Systems and Linear Models: An Empirical Comparison of Learning‐By‐Examples Methods* , 1992 .

[13]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[14]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[15]  Stephen Muggleton,et al.  Machine intelligence and inductive learning , 1994 .

[16]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[17]  Gary J. Koehler,et al.  Minimizing Misclassifications in Linear Discriminant Analysis , 1990 .

[18]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[19]  Leslie G. Valiant,et al.  A general lower bound on the number of examples needed for learning , 1988, COLT '88.

[20]  Timothy Paul Cronan,et al.  Production System Development for Expert Systems Using a Recursive Partitioning Induction Approach: An Application to Mortgage, Commercial, and Consumer Lending , 1991 .

[21]  Melody Y. Kiang,et al.  Managerial Applications of Neural Networks: The Case of Bank Failure Predictions , 1992 .

[22]  Robert J. Marks,et al.  Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications , 1989, NIPS.

[23]  Stephen F. Smith,et al.  A Genetic System for Learning Models of Consumer Choice , 1987, ICGA.

[24]  Katherine Schipper,et al.  Application of Classification Techniques in Business, Banking and Finance. , 1983 .

[25]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[26]  Edward I. Altman,et al.  Application of Classification Techniques in Business, Banking and Finance. , 1983 .

[27]  Michael Y. Hu,et al.  An experimental evaluation of neural networks for classification , 1993, Comput. Oper. Res..

[28]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[29]  Gary J. Koehler,et al.  Linear Discriminant Functions Determined by Genetic Search , 1991, INFORMS J. Comput..

[30]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[31]  Cao Feng,et al.  A Comparative Study of Classification Algorithms: Statistical, Machine Learning and Neural Network , 1992, Machine Intelligence 13.

[32]  James V. Hansen,et al.  Artificial Intelligence and Generalized Qualitative‐Response Models: An Empirical Test on Two Audit Decision‐Making Domains , 1992 .

[33]  Patrick D. Surry,et al.  Fundamental Limitations on Search Algorithms: Evolutionary Computing in Perspective , 1995, Computer Science Today.

[34]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[35]  Michael Y. Hu,et al.  Two-Group Classification Using Neural Networks* , 1993 .

[36]  Franklin Allen,et al.  Using genetic algorithms to find technical trading rules , 1999 .

[37]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[38]  Ingoo Han,et al.  An empirical investigation of some data effects on the classification accuracy of probit, ID3, and neural networks* , 1992 .

[39]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[40]  Gary J. Koehler,et al.  The accuracy of concepts learned from induction , 1993, Decis. Support Syst..

[41]  Cullen Schaffer,et al.  A Conservation Law for Generalization Performance , 1994, ICML.

[42]  Douglas H. Fisher,et al.  An Empirical Comparison of ID3 and Back-propagation , 1989, IJCAI.

[43]  David Haussler,et al.  Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework , 1988, Artif. Intell..

[44]  Antonie Stam,et al.  FOUR APPROACHES TO THE CLASSIFICATION PROBLEM IN DISCRIMINANT ANALYSIS: AN EXPERIMENTAL STUDY* , 1988 .

[45]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[46]  J. R. Quinlan,et al.  Comparing connectionist and symbolic learning methods , 1994, COLT 1994.

[47]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[48]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.