Intermittent process analysis with scattering moments

Scattering moments provide nonparametric models of random processes with stationary increments. They are expected values of random variables computed with a nonexpansive operator, obtained by iteratively applying wavelet transforms and modulus nonlinearities, which preserves the variance. First- and second-order scattering moments are shown to characterize intermittency and self-similarity properties of multiscale processes. Scattering moments of Poisson processes, fractional Brownian motions, L\'{e}vy processes and multifractal random walks are shown to have characteristic decay. The Generalized Method of Simulated Moments is applied to scattering moments to estimate data generating models. Numerical applications are shown on financial time-series and on energy dissipation of turbulent flows.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[3]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[4]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[5]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[7]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[9]  Arne F. Jacob,et al.  Wavelets for the Analysis of Microstrip Lines , 1995 .

[10]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[11]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[12]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[13]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[14]  Intermittent free turbulence , 1999 .

[15]  O. Chanal,et al.  Intermittency in a turbulent low temperature gaseous helium jet , 2000 .

[16]  J. Delour,et al.  Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis , 2001 .

[17]  S. Jaffard Wavelet expansions, function spaces and multifractal analysis , 2001 .

[18]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[20]  Lagrangian and Eulerian velocity intermittency , 2002 .

[21]  E. Bacry,et al.  Log-Infinitely Divisible Multifractal Processes , 2002, cond-mat/0207094.

[22]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[23]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[24]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[25]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[26]  P. Abry,et al.  Bootstrap for Empirical Multifractal Analysis , 2007, IEEE Signal Processing Magazine.

[27]  Emmanuel Bacry,et al.  Continuous cascade models for asset returns , 2008 .

[28]  A. Dasgupta Asymptotic Theory of Statistics and Probability , 2008 .

[29]  Log-Normal continuous cascades: aggregation properties and estimation. Application to financial time-series , 2008, 0804.0185.

[30]  R. Robert,et al.  Gaussian multiplicative chaos revisited , 2008, 0807.1030.

[31]  Patrice Abry,et al.  Wavelet leaders and bootstrap for multifractal analysis of images , 2009, Signal Process..

[32]  D. Belomestny Spectral estimation of the fractional order of a Lévy process , 2010, 1001.1820.

[33]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[34]  B. Mandelbrot Fractals and Scaling In Finance: Discontinuity, Concentration, Risk , 2010 .

[35]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[36]  Mathieu Rosenbaum,et al.  A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones , 2011 .

[37]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[38]  Stéphane Mallat,et al.  Combined scattering for rotation invariant texture analysis , 2012, ESANN.

[39]  S. Mallat,et al.  Invariant Scattering Convolution Networks , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Emmanuel Bacry,et al.  Log-normal continuous cascade model of asset returns: aggregation properties and estimation , 2013 .

[41]  Joakim Andén,et al.  Deep Scattering Spectrum , 2013, IEEE Transactions on Signal Processing.

[42]  Joakim Andén,et al.  Scattering Transform for Intrapartum Fetal Heart Rate Variability Fractal Analysis: A Case-Control Study , 2014, IEEE Transactions on Biomedical Engineering.