Tetraaquabis(orotato-κO)cobalt(II) dihydrate

In the title CoII complex, [Co(C5H3N2O4)2(H2O)4]·2H2O, the CoII ion is located on an inversion center and is coordinated by two orotate (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate) anions and four water molecules in a slightly distorted octahedral geometry. The dihedral angle between the carboxylate group and the attached orotate ring is 1.2 (3)°. In the crystal structure, intermolecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network. π–π contacts between the orotate rings [centroid–centroid distances = 3.439 (2) and 3.438 (2) Å] further stabilize the structure.

[1]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[2]  I. Mutikainen The crystal structure of triammine(orotato)zinc(II) monohydrate , 1987 .

[3]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[4]  B. Zümreoğlu-Karan,et al.  Transition metal(II) complexes of vitamin B13 with monodentate orotate(1−) ligands , 2006 .

[5]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[6]  M. Sabat,et al.  Tetraaquaorotatonickel(II) monohydrate , 1980 .

[7]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[8]  H. Schmidbaur,et al.  Orotate Complexes, II1) Preparation and Crystal Structures of Calcium and Zinc Orotate(2‐) Hydrates , 1991 .

[9]  P. Naumov,et al.  Syntheses, characterization and crystal structures of novel amine adducts of metal saccharinates, orotates and salicylates , 2003 .

[10]  B. Zümreoğlu-Karan,et al.  Diaquabis(phen)Ni(II) Complex with Vitamin B13 Counter-ions , 2008 .

[11]  H. Schmidbaur,et al.  Asparagin‐ und Glutaminsäure als Liganden für Alkali‐ und Erdalkalimetalle: Strukturchemische Beiträge zum Fragenkomplex der Magnesiumtherapie , 1990 .

[12]  M. Plater,et al.  Hydrothermal crystallisation of metal (II) orotates (M=nickel, cobalt, manganese or zinc). Effect of 2,2-bipyridyl, 2,2-dipyridyl amine, 1-methyl-3-(2-pyridyl)pyrazole, phenanthroline and 2,9-dimethyl-1,10-phenanthroline upon structure , 2002 .

[13]  Norman C. Li,et al.  Metal complexes of pyrimidine derivatives and adenosine monophosphate—III , 1966 .

[14]  L. Smith,et al.  Pyrimidine metabolism in man. I. The biosynthesis of orotic acid. , 1959, The Journal of clinical investigation.

[15]  J. Koskikallio,et al.  The Crystal Structure of Ammonium Orotate Monohydrate. , 1971 .

[16]  N. Kretchmer,et al.  A Review: Biological and Clinical Aspects of Pyrimidine Metabolism , 1974, Pediatric Research.

[17]  S. Wimmer,et al.  Platinum and palladium complexes of 3-methyl orotic acid: a route toward palladium complexes with good antitumor activity. , 1990, Journal of inorganic biochemistry.

[18]  I. Mutikainen,et al.  Triclinic Form of Tetraaqua(orotato-N,O)magnesium(II) Hydrate at 153K , 1996 .

[19]  J. Jaud,et al.  Polymeric copper(II)-orotato complexes, [(C5H2N2O4)Cu(H2O)2]n , 1999 .

[20]  R. Cao,et al.  Solvothermal Syntheses and Characterizations of Two Isomorphous One-Dimensional Chain Complexes Constructed by Orotic Acid , 2002 .

[21]  B. Thomas,et al.  The structures of tetraaqua(uracil-6-carboxylate)zinc(II) monohydrate (A) and tetraaqua(uracil-6-carboxylato)nickel(II) monohydrate (B) , 1986 .