A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics

[1]  Jongho Lee,et al.  Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma , 2019, Neuroradiology.

[2]  S. Price,et al.  Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement , 2019, Therapeutic advances in neurological disorders.

[3]  A. Andrew,et al.  Changes in Primary Care Health Care Utilization after Inclusion of Epidemiologic Data in Lumbar Spine MR Imaging Reports for Uncomplicated Low Back Pain. , 2018, Radiology.

[4]  Susan M. Chang,et al.  Response Assessment in Neuro-Oncology Clinical Trials. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  Benedikt Wiestler,et al.  Local Fractional Anisotropy Is Reduced in Areas with Tumor Recurrence in Glioblastoma. , 2017, Radiology.

[6]  S. Price,et al.  Validation of a semi‐automatic co‐registration of MRI scans in patients with brain tumors during treatment follow‐up , 2016, NMR in biomedicine.

[7]  Teresa Wu,et al.  Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma , 2015, PloS one.

[8]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[9]  J. Lemée,et al.  Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. , 2015, Neuro-oncology.

[10]  M. McLean,et al.  Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas , 2015, Journal of magnetic resonance imaging : JMRI.

[11]  A. Brodbelt,et al.  Glioblastoma in England: 2007-2011. , 2015, European journal of cancer.

[12]  J. Mosser,et al.  Characterizing the peritumoral brain zone in glioblastoma: a multidisciplinary analysis , 2015, Journal of Neuro-Oncology.

[13]  A. Lagares,et al.  A Prognostic Model Based on Preoperative MRI Predicts Overall Survival in Patients with Diffuse Gliomas , 2014, American Journal of Neuroradiology.

[14]  J. Gillard,et al.  Imaging biomarkers of brain tumour margin and tumour invasion. , 2011, The British journal of radiology.

[15]  Yi Yan,et al.  Quantitative analysis of glioma cell invasion by diffusion tensor imaging , 2010, Journal of Clinical Neuroscience.

[16]  T. Carpenter,et al.  Predicting patterns of glioma recurrence using diffusion tensor imaging , 2007, European Radiology.

[17]  T. Carpenter,et al.  Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. , 2006, AJNR. American journal of neuroradiology.

[18]  T. Carpenter,et al.  Enhanced visualization and quantification of magnetic resonance diffusion tensor imaging using the p:q tensor decomposition. , 2006, The British journal of radiology.

[19]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[20]  Toshinori Hirai,et al.  Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas , 1999, Journal of magnetic resonance imaging : JMRI.

[21]  K R Hess,et al.  Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. , 1998, Neurosurgery.

[22]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[23]  S. Price,et al.  Extent of resection of peritumoral diffusion tensor imaging-detected abnormality as a predictor of survival in adult glioblastoma patients. , 2017, Journal of neurosurgery.

[24]  Kevin Petrecca,et al.  Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma , 2012, Journal of Neuro-Oncology.