Herakles Thruster Development for the Prometheus JIMO Mission

The Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL) are leading a government technology program to design, develop, and validate a thruster for NASA’s Prometheus Project, and specifically, for the JIMO mission. This joint effort to develop the ‘Herakles’ thruster evolved from prior technology work (2002-04) awarded under competitive NRA proposals which resulted in development of high-power (20-40 kW) laboratory model thruster concepts at GRC and JPL (HiPEP and NEXIS, respectively). Development status of the Herakles thruster technology is reviewed.

[1]  I. Katz,et al.  Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes , 2004 .

[2]  I. Mikellides Theoretical Model of a Hollow Cathode Insert Plasma , 2004 .

[3]  Michael J. Patterson,et al.  Wear testing of a 21 kW 7600 s ion thruster , 2005 .

[4]  James S. Sovey,et al.  An ion propulsion system for NASA's Deep Space missions , 1999 .

[5]  John R. Brophy,et al.  Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics , 2004 .

[6]  James E. Polk,et al.  Three-Dimensional Particle Simulations of Ion-Optics Plasma Flow and Grid Erosion , 2003 .

[7]  Michael J. Patterson,et al.  Development status of a 5/10-kW class ion engine , 2001 .

[8]  Andrew Hoskins,et al.  Development of a Prototype Model Ion Thruster for the NEXT System , 2004 .

[9]  R. L. Poeschel,et al.  Ring-cusp ion thrusters , 1984 .

[10]  James E. Polk,et al.  Discharge Chamber Performance of the NEXIS Ion Thruster , 2004 .

[11]  George C. Soulas,et al.  Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics , 2004 .

[12]  J. Polk,et al.  An overview of the Nuclear Electric Xenon Ion System (NEXIS) program , 2003 .

[13]  Scott D. Kovaleski,et al.  Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter , 2001 .

[14]  James E. Polk,et al.  Extending hollow cathode life for electric propulsion in long-term missions , 2004 .

[15]  Michael J. Patterson,et al.  Next: NASA's Evolutionary Xenon Thruster development status , 2003 .

[16]  J. R. Beattie,et al.  Characteristics of ring-cusp discharge chambers , 1991 .

[17]  Nicole J. Meckel,et al.  Random and Sine-Spectrum Vibration Testing of Pyrolytic Graphite Ion Optics , 2005 .

[18]  James S. Sovey Improved ion containment using a ring-cusp ion thruster , 1984 .

[19]  Michael J. Patterson,et al.  An overview of the high power electric propulsion (HiPEP) project , 2004 .

[20]  T. W. Reynolds Mathematical representation of current density profiles from ion thrusters , 1971 .

[21]  Dan M. Goebel,et al.  Ion source discharge performance and stability , 1982 .