On Minimal Asymptotic Basis of Order 4
暂无分享,去创建一个
Abstract Let N denote the set of all nonnegative integers and A be a subset of N. Let W be a nonempty subset of N. Denote by F∗(W ) the set of all finite, nonempty subsets of W . Fix integer g ≥ 2, let Ag(W ) be the set of all numbers of the form ∑ f∈F afg f where F ∈ F∗(W ) and 1 ≤ af ≤ g − 1. For i = 0, 1, 2, 3, let Wi = {n ∈ N | n ≡ i (mod 4)}. In this paper, we show that the set A = ∪3 i=0 Ag(Wi) is a minimal asymptotic basis of order four.
[1] M. Nathanson. Minimal bases and powers of 2 , 1988 .
[2] M. Nathanson. Minimal bases and maximal nonbases in additive number theory , 1974 .
[3] A. Stöhr,et al. Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .
[4] M. Nathanson,et al. A simple construction of minimal asymptotic bases , 1989 .