BEAMS (BEAds Modelling System): a set of computer programs for the generation, the visualization and the computation of the hydrodynamic and conformational properties of bead models of proteins

[1]  P Bork,et al.  Structure and distribution of modules in extracellular proteins , 1996, Quarterly Reviews of Biophysics.

[2]  J. Antosiewicz,et al.  Computation of the dipole moments of proteins. , 1995, Biophysical journal.

[3]  F G Diaz,et al.  HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. , 1994, Biophysical journal.

[4]  S Kim,et al.  Predicting protein diffusion coefficients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Carmelina Ruggiero,et al.  A Set Of Computer Programs For Tee Construction, The Evaluation And The Representation Of Hydrodynamic Models Of Proteins , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  J. García de la Torre,et al.  Transport properties of rigid bent-rod macromolecules and of semiflexible broken rods in the rigid-body treatment. Analysis of the flexibility of myosin rod. , 1988, Biophysical journal.

[7]  R. Pastor,et al.  Frictional models for stochastic simulations of proteins , 1988, Biopolymers.

[8]  W. Wegener Center of diffusion of flexible macromolecules , 1985 .

[9]  R. Goldstein Macromolecular diffusion constants: A calculational strategy , 1985 .

[10]  M. Carson,et al.  Dependence of the shape of the plasma fibronectin molecule on solvent composition. Ionic strength and glycerol content. , 1983, The Journal of biological chemistry.

[11]  J. G. Torre,et al.  Effects from bead size and hydrodynamic interactions on the translational and rotational coefficients of macromolecular bead models , 1983 .

[12]  M. Tirado,et al.  Approximate methods for calculating hydrodynamic properties of macromolecules in dilute solution. Theory and application to rigid structures , 1983 .

[13]  S. Harvey,et al.  Hydrodynamic resistance and diffusion coefficients of segmentally flexible macromolecules with two subunits , 1983 .

[14]  W. Wegener Bead models of segmentally flexible macromolecules , 1982 .

[15]  W. Wegener A swivel‐jointed formalism for segmentally flexible macromolecules and its application to the rotational behavior of myosin , 1982 .

[16]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[17]  W. Wegener,et al.  Diffusion coefficients for rigid macromolecules with irregular shapes that allow rotational‐translational coupling , 1981, Biopolymers.

[18]  R. Dowben,et al.  Diffusion coefficients for segmentally flexible macromolecules: General formalism and application to rotational behavior of a body with two segments , 1980 .

[19]  C. Cantor,et al.  Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function , 1980 .

[20]  J. G. de la Torre,et al.  Transport properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes , 1980 .

[21]  S. Harvey Transport properties of particles with segmental flexibility. I. Hydrodynamic resistance and diffusion coefficients of a freely hinged particle , 1979 .

[22]  William A. Wegene,et al.  Time‐dependent birefringence, linear dichroism, and optical rotation resulting from rigid‐body rotational diffusion , 1979 .

[23]  V. Bloomfield,et al.  Hydrodynamic properties of macromolecular complexes. IV. Intrinsic viscosity theory, with applications to once‐broken rods and multisubunit proteins , 1978 .

[24]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[25]  Keishiro Tsuda,et al.  Hydrodynamic Properties of Rigid Complex Molecules , 1970 .

[26]  L. Stryer,et al.  Segmental flexibility in an antibody molecule. , 1970, Journal of molecular biology.

[27]  Hiromi Yamakawa,et al.  Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction , 1970 .

[28]  Howard Brenner,et al.  Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape: II. General theory , 1967 .

[29]  K. V. van Holde,et al.  Frictional coefficients of multisubunit structures. II. Application to proteins and viruses , 1967, Biopolymers.

[30]  R. Doolittle The multiplicity of domains in proteins. , 1995, Annual review of biochemistry.

[31]  S. Perkins High-flux X-ray and neutron solution scattering. , 1994, Methods in molecular biology.

[32]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[33]  J. W. Humberston Classical mechanics , 1980, Nature.

[34]  C. D. Haën,et al.  [8] The translational friction coefficient of proteins , 1979 .

[35]  Alan G. Marshall,et al.  Biophysical Chemistry: Principles, Techniques and Applications , 1978 .

[36]  I. Kuntz,et al.  Hydration of proteins and polypeptides. , 1974, Advances in protein chemistry.

[37]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .