Synthesis and Structure of meso‐Substituted Dibenzihomoporphyrins

Bench‐stable meso‐substituted di(p/m‐benzi)homoporphyrins were synthesized through acid‐catalyzed condensation of dipyrrole derivatives with aryl aldehydes. The insertion of a 1,1,2,2‐tetraphenylethene (TPE) or but‐2‐ene‐2,3‐diyldibenzene unit in the porphyrin framework results in the formation of dibenzihomoporphyrins, merging the features of hydrocarbons and porphyrins. Single crystal X‐ray analyses established the non‐planar structure of these molecules, with the phenylene rings out of the mean plane, as defined by the dipyrromethene moiety and the two meso‐carbon atoms. Spectroscopic and structural investigations show that the macrocycles exhibit characteristics of both TPE or but‐2‐ene‐2,3‐diyldibenzene and dipyrromethene units indicating the non‐aromatic characteristics of the compounds synthesized. Additionally, the dibenzihomoporphyrins were found to generate singlet oxygen, potentially allowing their use as photosensitizers.

[1]  M. Senge,et al.  Short‐Chained Anthracene Strapped Porphyrins and their Endoperoxides† , 2020, European journal of organic chemistry.

[2]  C. Suresh,et al.  Homocarbaporphyrinoids: The m-o-m and p-o-p Terphenyl Embedded Expanded Porphyrin Analogues and Their RhI Complexes. , 2019, Chemistry.

[3]  M. Ravikanth,et al.  Covalently Linked meso -BODIPYnyl Dithiahomoporphyrins: Synthesis and Properties , 2018, European Journal of Organic Chemistry.

[4]  M. Vicente,et al.  Synthesis and in vitro PDT evaluation of new porphyrins containing meso‐epoxymethylaryl cationic groups , 2018, Lasers in surgery and medicine.

[5]  C. Suresh,et al.  meso-Aryl [20]π Homoporphyrin: The Simplest Expanded Porphyrin with the Smallest Möbius Topology. , 2017, Angewandte Chemie.

[6]  J. Sessler,et al.  Introduction: Expanded, Contracted, and Isomeric Porphyrins. , 2017, Chemical reviews.

[7]  A. Osuka,et al.  Chemistry of meso-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. , 2017, Chemical reviews.

[8]  Qiang Zhao,et al.  Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency , 2016, Scientific Reports.

[9]  M. Ravikanth,et al.  Synthesis, Structure, Spectral and Electrochemical Properties of [20]Dioxahomoporphyrins and ­Covalently Linked Dioxahomoporphyrin–Porphyrin Dyads , 2016 .

[10]  C. Suresh,et al.  A 6,11,16-Triarylbiphenylcorrole with an adj-CCNN Core: Stabilization of an Organocopper(III) Complex. , 2015, Angewandte Chemie.

[11]  Dong Sub Kim,et al.  Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions. , 2015, Journal of the American Chemical Society.

[12]  A. Białońska,et al.  Phenanthriporphyrin: an antiaromatic aceneporphyrinoid as a ligand for a hypervalent organophosphorus(V) moiety. , 2015, Angewandte Chemie.

[13]  G. Ferrence,et al.  Synthesis and metalation of dimethoxybenziporphyrins, thiabenziporphyrins, and dibenziporphyrins. , 2014, The Journal of organic chemistry.

[14]  M. Ravikanth,et al.  Stable nonaromatic [20]dithiaporphyrin (2.1.1.1) macrocycles: synthesis, structure, spectral, electrochemical, and metal ion sensing studies. , 2014, The Journal of organic chemistry.

[15]  Deyaa I. AbuSalim,et al.  Dicarbaporphyrinoid systems. Synthesis of oxo-adj-dibenziphlorins. , 2013, The Journal of organic chemistry.

[16]  T. Goslinski,et al.  Fluorinated porphyrinoids and their biomedical applications , 2011 .

[17]  A. Osuka,et al.  Expanded porphyrins and aromaticity. , 2011, Chemical communications.

[18]  J. Sessler,et al.  Texaphyrins: tumor localizing redox active expanded porphyrins. , 2011, Anti-cancer agents in medicinal chemistry.

[19]  Jong Min Lim,et al.  The photophysical properties of expanded porphyrins: relationships between aromaticity, molecular geometry and non-linear optical properties. , 2008, Chemical communications.

[20]  T. K. Chandrashekar,et al.  Structural diversity in expanded porphyrins. , 2008, Accounts of chemical research.

[21]  Saeed Zakavi,et al.  Interaction of para-substituted meso-tetraphenylporphyrins and meso-tetra(n-propyl)porphyrin with weak and strong carboxylic acids: A UV–Vis spectroscopic study , 2007 .

[22]  H. Hope X-ray crystallography: a fast, first-resort analytical tool , 2007 .

[23]  Jing Zeng,et al.  Insights into the general and efficient cross McMurry reactions between ketones. , 2006, The Journal of organic chemistry.

[24]  T. K. Chandrashekar,et al.  Core-modified expanded porphyrins with large third-order nonlinear optical response. , 2005, Journal of the American Chemical Society.

[25]  R. Dědic,et al.  A comparison of photosensitizing properties of meso-tetraphenylporphin in acetone and in dimethyl sulfoxide , 2005 .

[26]  J. Shelnutt,et al.  Origin of the red shifts in the optical absorption bands of nonplanar tetraalkylporphyrins. , 2003, Journal of the American Chemical Society.

[27]  M. Stępień,et al.  Tetraphenyl-p-benziporphyrin: a carbaporphyrinoid with two linked carbon atoms in the coordination core. , 2002, Journal of the American Chemical Society.

[28]  M. Senge A Conformational Study of 5,10,15,20-Tetraalkyl-22H+,24H+-porphyrindiium Salts (Dication Salts) , 2000 .

[29]  S. T. Chaney,et al.  Conjugated Macrocycles Related to the Porphyrins. 12.1 Oxybenzi- and Oxypyriporphyrins: Aromaticity and Conjugation in Highly Modified Porphyrinoid Structures , 1998 .

[30]  L. D. Sparks,et al.  Nonplanar distortion modes for highly substituted porphyrins , 1992 .

[31]  T. Mallouk,et al.  Metallotexaphyrins: a new family of photosensitisers for efficient generation of singlet oxygen , 1989 .

[32]  H. Rosen,et al.  Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system. , 1977, The Journal of biological chemistry.

[33]  B. Chevrier,et al.  A new homoporphyrin system. The 21-ethoxycarbonyl-5, 10, 15, 20-tetraphenyl-21 H-21-homoporphine. Crystal structure and molecular stereochemistry of the nickel(II) complex. , 1975, Journal of the American Chemical Society.

[34]  J. Mcmurry,et al.  A new method for the reductive coupling of carbonyls to olefins. Synthesis of beta-carotene. , 1974, Journal of the American Chemical Society.

[35]  R. Grigg Ring expansion of prophins with ethoxycarbonylnitrene , 1971 .