Towards the genetic treatment of β-thalassemia: new disease models, new vectors, new cells

The transfer of a regulated globin gene in autologous hematopoietic stem cells is an attractive therapeutic approach to β-thalassemia, since, in principle, it is applicable to all patients. This commentary reviews recent advances in animal models, globin vector design and stem cell isolation. See related article on page 356.

[1]  Y. Kan,et al.  A 36-base-pair core sequence of locus control region enhances retrovirally transferred human beta-globin gene expression. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. A. Swank,et al.  Activation of the β-like globin genes in transgenic mice is dependent on the presence of the β-locus control region , 2002 .

[3]  I. Meeus,et al.  In vivo silencing of the human gamma-globin gene in murine erythroid cells following retroviral transduction. , 2000, Blood cells, molecules & diseases.

[4]  L. Skow,et al.  A mouse model for beta-thalassemia. , 1983, Cell.

[5]  G. Lucarelli,et al.  Bone marrow transplantation in the treatment of thalassemia. , 1994, Current opinion in hematology.

[6]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[7]  J. Baron,et al.  The Molecular Basis of Blood Diseases , 1994 .

[8]  R. Grady,et al.  Chelation therapy in beta-thalassemia: an optimistic update. , 2001, Seminars in hematology.

[9]  George Q. Daley,et al.  Reprogramming of human somatic cells to pluripotency with defined factors , 2008, Nature.

[10]  P. Wong,et al.  Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. , 1996, Blood.

[11]  R. Grady,et al.  Chelation therapy in β-thalassemia: An optimistic update☆ , 2001 .

[12]  D. Higgs Do LCRs Open Chromatin Domains? , 1998, Cell.

[13]  Michel Sadelain,et al.  Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin , 2000, Nature.

[14]  F. Zaibak,et al.  A humanized mouse model for a common β0-thalassemia mutation , 2005 .

[15]  D. J. Weatherall,et al.  Phenotype—genotype relationships in monogenic disease: lessons from the thalassaemias , 2001, Nature Reviews Genetics.

[16]  J. Dick,et al.  Engraftment of immune-deficient mice with primitive hematopoietic cells from beta-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. , 1995, Human molecular genetics.

[17]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[18]  P. Giardina,et al.  Bone Marrow Transplantation for Homozygous β‐Thalassemia: The Memorial Sloan‐Kettering Cancer Center Experience , 1998, Annals of the New York Academy of Sciences.

[19]  F. Grosveld,et al.  Evaluation of beta-globin gene therapy constructs in single copy transgenic mice. , 1997, Nucleic acids research.

[20]  P. Levings,et al.  The human beta-globin locus control region. , 2002, European journal of biochemistry.

[21]  Marius Wernig,et al.  Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells , 2007, Nature Biotechnology.

[22]  M. Groudine,et al.  Looping versus linking: toward a model for long-distance gene activation. , 1999, Genes & development.

[23]  W. C. Forrester,et al.  High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  F. Grosveld Activation by locus control regions? , 1999, Current opinion in genetics & development.

[25]  S. Karlsson,et al.  Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. A. Swank,et al.  Activation of the beta-like globin genes in transgenic mice is dependent on the presence of the beta-locus control region. , 2002, Human molecular genetics.

[27]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[28]  M. Andreani,et al.  Bone marrow transplantation in adult thalassemic patients. , 1999, Blood.

[29]  S. Rivella,et al.  Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. , 2000, Nature.

[30]  R. Nagel,et al.  Permanent and panerythroid correction of murine β thalassemia by multiple lentiviral integration in hematopoietic stem cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  F. Zaibak,et al.  A humanized BAC transgenic/knockout mouse model for HbE/beta-thalassemia. , 2006, Genomics.

[32]  J. Strouboulis,et al.  Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. , 2003, Blood.

[33]  Marius Wernig,et al.  Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin , 2007, Science.

[34]  M. Sadelain,et al.  Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in beta-thalassemic mice. , 2007, Blood.

[35]  F. Grosveld,et al.  Evaluation of β-globin gene therapy constructs in single-copy transgenic mice. , 1997 .

[36]  Asha Shah,et al.  Thalassemia syndromes. , 2004, Indian journal of medical sciences.

[37]  J. Strouboulis,et al.  Stochastic patterns in globin gene expression are established prior to transcriptional activation and are clonally inherited. , 2002, Molecular cell.

[38]  R. Mulligan,et al.  Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells , 1988, Nature.

[39]  L. Skow,et al.  A mouse model for β-thalassemia , 1983, Cell.

[40]  R. Nagel,et al.  Correction of Sickle Cell Disease in Transgenic Mouse Models by Gene Therapy , 2001, Science.

[41]  J. D. Engel,et al.  Looping, Linking, and Chromatin Activity New Insights into β-globin Locus Regulation , 2000, Cell.

[42]  S. Rivella,et al.  A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. , 2003, Blood.

[43]  F. Zaibak,et al.  A humanized mouse model for a common beta0-thalassemia mutation. , 2005, Genomics.

[44]  Licheng Zeng,et al.  Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. , 2004, Blood.

[45]  W. Shehee,et al.  Lethal thalassemia after insertional disruption of the mouse major adult beta-globin gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Zaibak,et al.  Transgene copy number-dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. , 2005, Biochimica et biophysica acta.

[47]  S. Rivella,et al.  Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. , 2002, Blood.

[48]  M. Groudine,et al.  ChIPs of the β-globin locus: unraveling gene regulation within an active domain , 2002 .

[49]  J. Spivak,et al.  Commentary on and reprint of Cooley TB, Lee PA, A series of cases of splenomegaly in children with anemia and peculiar bone changes, in Transactions of the American Pediatric Society (1925) 37:29–30, 1925 , 2000 .

[50]  Y. Kan,et al.  Fetal gene therapy of α-thalassemia in a mouse model , 2007, Proceedings of the National Academy of Sciences.

[51]  D J Weatherall,et al.  The thalassemia syndromes. , 2016, Texas reports on biology and medicine.

[52]  Y. Kan,et al.  Correction of the sickle cell mutation in embryonic stem cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Bodine,et al.  A Minimal Ankyrin Promoter Linked to a Human γ-Globin Gene Demonstrates Erythroid Specific Copy Number Dependent Expression with Minimal Position or Enhancer Dependence in Transgenic Mice* , 2000, The Journal of Biological Chemistry.

[54]  S. Rivella,et al.  Successful treatment of murine β-thalassemia intermedia by transfer of the human β-globin gene , 2002 .

[55]  R. Jaenisch,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2007, Nature.

[56]  G. Stamatoyannopoulos,et al.  Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Groudine,et al.  ChIPs of the beta-globin locus: unraveling gene regulation within an active domain. , 2002, Current opinion in genetics & development.

[58]  F. Zaibak,et al.  Transgene copy number-dependent rescue of murine β-globin knockout mice carrying a 183 kb human β-globin BAC genomic fragment , 2005 .

[59]  R. Mulligan,et al.  Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector , 1987, Molecular and cellular biology.

[60]  M. Nefedov,et al.  Humanized β-Thalassemia Mouse Model Containing the Common IVSI-110 Splicing Mutation* , 2006, Journal of Biological Chemistry.

[61]  F. Grosveld,et al.  Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Levings,et al.  The human β‐globin locus control region , 2002 .

[63]  D. Tuan,et al.  Mutagenesis of retroviral vectors transducing human beta‐globin gene and beta‐globin locus control region derivatives results in stable transmission of an active transcriptional structure. , 1994, The EMBO journal.

[64]  D. Levasseur,et al.  Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. , 2003, Blood.

[65]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[66]  M. Bender,et al.  A majority of mice show long-term expression of a human beta-globin gene after retrovirus transfer into hematopoietic stem cells , 1989, Molecular and cellular biology.

[67]  D. Bodine,et al.  Long-term expression of gamma-globin mRNA in mouse erythrocytes from retrovirus vectors containing the human gamma-globin gene fused to the ankyrin-1 promoter. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  T. Ichisaka,et al.  GENERATION OF GERMLINECOMPETENT INDUCED PLURIPOTENT STEM CELLS , 2007 .

[69]  R. Kole,et al.  A common human beta globin splicing mutation modeled in mice. , 1998, Blood.

[70]  S. Yamanaka,et al.  Induction of pluripotent stem cells from fibroblast cultures , 2007, Nature Protocols.

[71]  Takashi Aoi,et al.  Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts , 2008, Nature Biotechnology.

[72]  P. Detloff,et al.  A mouse model for beta 0-thalassemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Sadelain,et al.  A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference , 2006, Nature Biotechnology.

[74]  F. Zaibak,et al.  A humanized BAC transgenic/knockout mouse model for HbE/β-thalassemia , 2006 .

[75]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells From Adult Human Fibroblasts by Defined Factors , 2008 .

[76]  G. Stamatoyannopoulos,et al.  Analysis of gamma-globin expression cassettes in retrovirus vectors. , 1999, Human gene therapy.

[77]  Y. Kan,et al.  Fetal gene therapy of alpha-thalassemia in a mouse model. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[78]  T. Cooley,et al.  A series of cases of splenomegaly in children with anemia and peculiar bone changes , 1925 .

[79]  A. Nienhuis,et al.  The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. , 2003, Blood.

[80]  N. Anagnou,et al.  Use of the hereditary persistence of fetal hemoglobin 2 enhancer to increase the expression of oncoretrovirus vectors for human gamma-globin , 2005, Gene Therapy.

[81]  S. Rivella,et al.  Globin gene transfer: a paradigm for transgene regulation and vector safety , 2003 .