Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components.

[1]  E. Bayer,et al.  Intermodular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus. , 2009, Journal of molecular biology.

[2]  H. Gilbert,et al.  Cellulosomes: microbial nanomachines that display plasticity in quaternary structure , 2007, Molecular microbiology.

[3]  Edward A Bayer,et al.  Evidence for a dual binding mode of dockerin modules to cohesins , 2007, Proceedings of the National Academy of Sciences.

[4]  S. Withers,et al.  Direct Demonstration of the Flexibility of the Glycosylated Proline-Threonine Linker in the Cellulomonas fimi Xylanase Cex through NMR Spectroscopic Analysis* , 2007, Journal of Biological Chemistry.

[5]  A. Brzozowski,et al.  Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases* , 2006, Journal of Biological Chemistry.

[6]  Z. Jia,et al.  Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jeremy C. Smith,et al.  Structural Basis of Cellulosome Efficiency Explored by Small Angle X-ray Scattering* , 2005, Journal of Biological Chemistry.

[8]  H. Gilbert,et al.  How Family 26 Glycoside Hydrolases Orchestrate Catalysis on Different Polysaccharides , 2005, Journal of Biological Chemistry.

[9]  H. Gilbert,et al.  Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. , 2005, Journal of molecular biology.

[10]  B. Webb,et al.  Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. , 2005, Biochemistry.

[11]  M. Hammel,et al.  Structural Insights into the Mechanism of Formation of Cellulosomes Probed by Small Angle X-ray Scattering* , 2004, Journal of Biological Chemistry.

[12]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[13]  Roy H. Doi,et al.  Cellulosomes: plant-cell-wall-degrading enzyme complexes , 2004, Nature Reviews Microbiology.

[14]  Harry J. Gilbert,et al.  Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Alzari,et al.  The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum Cellulosome. , 2002, Journal of molecular biology.

[16]  P. Alzari,et al.  Letter to the Editor: 1H, 13C, 15N NMR sequence-specific resonance assignment of a Clostridium thermocellum type II cohesin module , 2002, Journal of biomolecular NMR.

[17]  Pedro M Alzari,et al.  Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. , 2002, Biochemistry.

[18]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[19]  Randy J. Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2001, Acta crystallographica. Section D, Biological crystallography.

[20]  W. M. Westler,et al.  Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. , 2001, Journal of molecular biology.

[21]  E. Bayer,et al.  The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. , 1999, Trends in microbiology.

[22]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[23]  E. Bayer,et al.  Cellulosomes-structure and ultrastructure. , 1998, Journal of structural biology.

[24]  E. Bayer,et al.  Cellulose, cellulases and cellulosomes. , 1998, Current opinion in structural biology.

[25]  P. Alzari,et al.  The crystal structure of a type I cohesin domain at 1.7 A resolution. , 1997, Journal of molecular biology.

[26]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[27]  P. Gounon,et al.  Characterization and Subcellular Localization of the Clostridium thermocellum Scaffoldin Dockerin Binding Protein SdbA , 1996 .

[28]  E. Bayer,et al.  A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. , 1997, Structure.

[29]  T. Steitz,et al.  Crystal structure of a bacterial family‐III cellulose‐binding domain: a general mechanism for attachment to cellulose. , 1996, The EMBO journal.

[30]  P Béguin,et al.  A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA , 1996, Journal of bacteriology.

[31]  R. Dominguez,et al.  The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. , 1996, Structure.

[32]  P. Gounon,et al.  OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope , 1995, Journal of bacteriology.

[33]  R. Dominguez,et al.  Characterization of two crystal forms of Clostridium thermocellum endoglucanase CelC , 1994 .

[34]  E. Bayer,et al.  The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens. , 1993, The Journal of biological chemistry.

[35]  A. Demain,et al.  Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL‐protein reveals an unusual degree of internal homology , 1993, Molecular microbiology.

[36]  J. Aubert,et al.  Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface , 1993, Journal of bacteriology.

[37]  Michael P. Coughlan,et al.  Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy , 1987, Applied and environmental microbiology.

[38]  E. Bayer,et al.  Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose , 1986, Journal of bacteriology.

[39]  大宮 邦雄 Biotechnology of lignocellulose degradation and biomass utilization , 2004 .

[40]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  R. Warren Microbial hydrolysis of polysaccharides. , 1996, Annual review of microbiology.

[42]  S. Spinelli,et al.  Multiple crystal forms of endoglucanase CelD: signal peptide residues modulate lattice formation. , 1995, Journal of molecular biology.

[43]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.