Learning with Hilbert-Schmidt independence criterion: A review and new perspectives

[1]  Rong Jin,et al.  Multiple Kernel Learning for Visual Object Recognition: A Review , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Zhengming Ma,et al.  Dimensionality reduction for tensor data based on projection distance minimization and hilbert-schmidt independence criterion maximization , 2021, J. Intell. Fuzzy Syst..

[3]  Mehrdad J. Gangeh,et al.  Fast and Scalable Feature Selection for Gene Expression Data Using Hilbert-Schmidt Independence Criterion , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Lei Wang,et al.  Feature Selection with Kernel Class Separability , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[6]  Zhengming Ma,et al.  Nonlinear Dimensionality Reduction Based on HSIC Maximization , 2018, IEEE Access.

[7]  Peng Hao,et al.  Transfer learning using computational intelligence: A survey , 2015, Knowl. Based Syst..

[8]  Ratna Babu Chinnam,et al.  mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification , 2011, Inf. Sci..

[9]  Zohreh Azimifar,et al.  Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds , 2011, Pattern Recognit..

[10]  Huzefa Rangwala,et al.  Protein Function Prediction Using Dependence Maximization , 2013, ECML/PKDD.

[11]  Avishek Saha,et al.  Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[12]  Nan Zhang,et al.  Sufficient dimension reduction using Hilbert-Schmidt independence criterion , 2017, Comput. Stat. Data Anal..

[13]  Eghbal G. Mansoori,et al.  Filter-based unsupervised feature selection using Hilbert–Schmidt independence criterion , 2018, International Journal of Machine Learning and Cybernetics.

[14]  Baoqi Huang,et al.  Dimension reduction in radio maps based on the supervised kernel principal component analysis , 2018, Soft Computing.

[15]  Jianhua Xu,et al.  Effective and Efficient Multi-label Feature Selection Approaches via Modifying Hilbert-Schmidt Independence Criterion , 2016, ICONIP.

[16]  Chenping Hou,et al.  Multiview Classification With Cohesion and Diversity , 2020, IEEE Transactions on Cybernetics.

[17]  Saeid Homayouni,et al.  A Novel Multiple Kernel Learning Framework for Multiple Feature Classification , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Sayak Paul,et al.  A review of deep learning with special emphasis on architectures, applications and recent trends , 2020, Knowl. Based Syst..

[19]  Thomas F. Coleman,et al.  Spectral ranking and unsupervised feature selection for point, collective, and contextual anomaly detection , 2018, International Journal of Data Science and Analytics.

[20]  Yuhua Qian,et al.  Diversity-induced fuzzy clustering , 2019, Int. J. Approx. Reason..

[21]  Xiao Li,et al.  Dependence maximization based label space dimension reduction for multi-label classification , 2015, Eng. Appl. Artif. Intell..

[22]  Justin Bedo,et al.  Microarray Design Using the Hilbert-Schmidt Independence Criterion , 2008, PRIB.

[23]  Stratis Ioannidis,et al.  Deep Kernel Learning for Clustering , 2019, SDM.

[24]  Chin-Teng Lin,et al.  A review of clustering techniques and developments , 2017, Neurocomputing.

[25]  Bernhard Schölkopf,et al.  Remote Sensing Feature Selection by Kernel Dependence Measures , 2010, IEEE Geoscience and Remote Sensing Letters.

[26]  Michael I. Jordan,et al.  Kernel dimension reduction in regression , 2009, 0908.1854.

[27]  Jieping Ye,et al.  Learning subspace kernels for classification , 2008, KDD.

[28]  Qinghua Hu,et al.  Generalized Multi-view Unsupervised Feature Selection , 2018, ICANN.

[29]  Saeid Homayouni,et al.  Similarity-Based Multiple Kernel Learning Algorithms for Classification of Remotely Sensed Images , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Hao Wang,et al.  Identification of membrane protein types via multivariate information fusion with Hilbert-Schmidt Independence Criterion , 2020, Neurocomputing.

[31]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[32]  S. Geeitha,et al.  Incorporating EBO-HSIC with SVM for Gene Selection Associated with Cervical Cancer Classification , 2018, Journal of Medical Systems.

[33]  Le Song,et al.  Gene selection via the BAHSIC family of algorithms , 2007, ISMB/ECCB.

[34]  Mohamed S. Kamel,et al.  Kernelized Supervised Dictionary Learning , 2012, IEEE Transactions on Signal Processing.

[35]  Zhengming Ma,et al.  Local tangent space alignment based on Hilbert–Schmidt independence criterion regularization , 2019, Pattern Analysis and Applications.

[36]  Zechao Li,et al.  RED-Nets: Redistribution Networks for Multi-View Classification , 2021, Inf. Fusion.

[37]  Arthur Gretton,et al.  Large-scale kernel methods for independence testing , 2016, Statistics and Computing.

[38]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[39]  Houkuan Huang,et al.  Learning by local kernel polarization , 2009, Neurocomputing.

[40]  Laxmi Parida,et al.  Transductive HSIC Lasso , 2014, SDM.

[41]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[42]  Zhengming Ma,et al.  HSIC Regularized LTSA , 2019, Comput. Informatics.

[43]  Xiaoming Liu,et al.  Semi-supervised Discriminant Analysis Based on Dependence Estimation , 2009, ADMA.

[44]  Jie Lu,et al.  Two-Stage Fuzzy Multiple Kernel Learning Based on Hilbert–Schmidt Independence Criterion , 2018, IEEE Transactions on Fuzzy Systems.

[45]  Ivor W. Tsang,et al.  Incorporating the Loss Function Into Discriminative Clustering of Structured Outputs , 2010, IEEE Transactions on Neural Networks.

[46]  Junichiro Yoshimoto,et al.  Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data , 2017, BMC Bioinformatics.

[47]  Tao Zhou,et al.  Multiview Latent Space Learning With Feature Redundancy Minimization , 2020, IEEE Transactions on Cybernetics.

[48]  Wei Li,et al.  Kernel learning and optimization with Hilbert–Schmidt independence criterion , 2018, Int. J. Mach. Learn. Cybern..

[49]  Nicolas Courty,et al.  Sparse Hilbert Schmidt Independence Criterion and Surrogate-Kernel-Based Feature Selection for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[51]  Min Xiao,et al.  Feature Space Independent Semi-Supervised Domain Adaptation via Kernel Matching , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Dongyan Zhao,et al.  Two-stage multiple kernel learning with multiclass kernel polarization , 2013, Knowl. Based Syst..

[53]  Han Min,et al.  A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series , 2020 .

[54]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[55]  Philip S. Yu,et al.  Multi-label Ensemble Learning , 2011, ECML/PKDD.

[56]  Le Song,et al.  Supervised feature selection via dependence estimation , 2007, ICML '07.

[57]  Youlong Yang,et al.  Label Embedding for Multi-label Classification Via Dependence Maximization , 2020, Neural Processing Letters.

[58]  Eklas Hossain,et al.  HSIC Bottleneck Based Distributed Deep Learning Model for Load Forecasting in Smart Grid With a Comprehensive Survey , 2020, IEEE Access.

[59]  Stan Z. Li,et al.  Multi-view subspace clustering with intactness-aware similarity , 2019, Pattern Recognit..

[60]  Masashi Sugiyama,et al.  On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion , 2012, IEICE Trans. Inf. Syst..

[61]  Makoto Yamada,et al.  Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data , 2019, Bioinform..

[62]  Le Song,et al.  Kernelized Sorting , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[64]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[65]  Masashi Sugiyama,et al.  High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso , 2012, Neural Computation.

[66]  Chun Chen,et al.  Manifold optimal experimental design via dependence maximization for active learning , 2014, Neurocomputing.

[67]  Thomas Gumbsch,et al.  Kernel conditional clustering and kernel conditional semi-supervised learning , 2019, Knowledge and Information Systems.

[68]  George Vosselman,et al.  Optimizing Multiple Kernel Learning for the Classification of UAV Data , 2016, Remote. Sens..

[69]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[70]  Yao Zhao,et al.  Subspace learning by kernel dependence maximization for cross-modal retrieval , 2018, Neurocomputing.

[71]  Wei Yang,et al.  A Cascaded Feature Pyramid Network With Non-Backward Propagation for Facial Expression Recognition , 2020, IEEE Sensors Journal.

[72]  Chang Liu,et al.  Multi-label Feature Selection Method Combining Unbiased Hilbert-Schmidt Independence Criterion with Controlled Genetic Algorithm , 2018, ICONIP.

[73]  Lele Fu,et al.  An overview of recent multi-view clustering , 2020, Neurocomputing.

[74]  Jianhua Xu,et al.  A weighted linear discriminant analysis framework for multi-label feature extraction , 2018, Neurocomputing.

[75]  Muhammad Kashif Hanif,et al.  Overview and comparative study of dimensionality reduction techniques for high dimensional data , 2020, Inf. Fusion.

[76]  Ali Ghodsi,et al.  Minimizing the Discrepancy Between Source and Target Domains by Learning Adapting Components , 2014, Journal of Computer Science and Technology.

[77]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[78]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[79]  Povilas Daniusis,et al.  Supervised Feature Extraction Using Hilbert-Schmidt Norms , 2009, IDEAL.

[80]  Xin Shu,et al.  Multi-view uncorrelated discriminant analysis via dependence maximization , 2018, Applied Intelligence.

[81]  Jian Pei,et al.  Subspace multi-clustering: a review , 2018, Knowledge and Information Systems.

[82]  Le Song,et al.  A dependence maximization view of clustering , 2007, ICML '07.

[83]  Ayed Alwadain,et al.  Data mining techniques for analyzing healthcare conditions of urban space-person lung using meta-heuristic optimized neural networks , 2020, Cluster Computing.

[84]  Xin Shu,et al.  Speed up kernel dependence maximization for multi-label feature extraction , 2017, J. Vis. Commun. Image Represent..

[85]  Guoxian Yu,et al.  Semi-Supervised Multi-Label Dimensionality Reduction Based on Dependence Maximization , 2017, IEEE Access.

[86]  Naoaki Okazaki,et al.  Learning Co-Substructures by Kernel Dependence Maximization , 2017, IJCAI.

[87]  Hao Shen,et al.  Fast Kernel-Based Independent Component Analysis , 2009, IEEE Transactions on Signal Processing.

[88]  Bernhard Schölkopf,et al.  Regression by dependence minimization and its application to causal inference in additive noise models , 2009, ICML '09.

[89]  Mehryar Mohri,et al.  Algorithms for Learning Kernels Based on Centered Alignment , 2012, J. Mach. Learn. Res..

[90]  Zhi-Hua Zhou,et al.  Multilabel dimensionality reduction via dependence maximization , 2008, TKDD.

[91]  Lorenzo Bruzzone,et al.  Kernel-Based Domain-Invariant Feature Selection in Hyperspectral Images for Transfer Learning , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[92]  Bernhard Schölkopf,et al.  Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions , 2016, J. Mach. Learn. Res..

[93]  Yoram Baram,et al.  Learning by Kernel Polarization , 2005, Neural Computation.

[94]  Tian Zheng,et al.  Kernel‐based measures of association , 2018 .

[95]  W. Bastiaan Kleijn,et al.  The HSIC Bottleneck: Deep Learning without Back-Propagation , 2019, AAAI.

[96]  Mohak Shah,et al.  A General Framework for Analyzing Data from Two Short Time-Series Microarray Experiments , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[97]  Robert Jenssen,et al.  Noisy multi-label semi-supervised dimensionality reduction , 2019, Pattern Recognit..

[98]  David Zhang,et al.  Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization , 2016, IEEE Transactions on Cybernetics.

[99]  Shihui Ying,et al.  Doubly supervised parameter transfer classifier for diagnosis of breast cancer with imbalanced ultrasound imaging modalities , 2021, Pattern Recognit..

[100]  Tinghua Wang,et al.  Bridging deep and multiple kernel learning: A review , 2021, Inf. Fusion.

[101]  Qingwei Gao,et al.  Two-step multi-view and multi-label learning with missing label via subspace learning , 2021, Appl. Soft Comput..

[102]  Kewei Cheng,et al.  Feature Selection , 2016, ACM Comput. Surv..

[103]  Ali Ghodsi,et al.  Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques , 2017, Climate Dynamics.

[104]  Mei-Ling Shyu,et al.  A Survey on Deep Learning , 2018, ACM Comput. Surv..

[105]  Qinghua Hu,et al.  Multi-view label embedding , 2018, Pattern Recognit..

[106]  Jun Yu,et al.  Cross-modal subspace learning via kernel correlation maximization and discriminative structure-preserving , 2020, Multimedia Tools and Applications.

[107]  Philip S. Yu,et al.  Under Consideration for Publication in Knowledge and Information Systems Gmlc: a Multi-label Feature Selection Framework for Graph Classification , 2011 .

[108]  Li Li,et al.  Maximum relevance minimum common redundancy feature selection for nonlinear data , 2017, Inf. Sci..

[109]  Bardia Yousefi,et al.  A Diagnostic Biomarker for Breast Cancer Screening via Hilbert Embedded Deep Low-Rank Matrix Approximation , 2021, IEEE Transactions on Instrumentation and Measurement.

[110]  Yao Zhao,et al.  Towards learning a semantic-consistent subspace for cross-modal retrieval , 2018, Multimedia Tools and Applications.

[111]  Bernhard Schölkopf,et al.  Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..

[112]  Tomasz Górecki,et al.  Independence test and canonical correlation analysis based on the alignment between kernel matrices for multivariate functional data , 2018, Artificial Intelligence Review.

[113]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[114]  Liang Tao,et al.  Learning shared subspace for multi-label dimensionality reduction via dependence maximization , 2015, Neurocomputing.

[115]  Tomoharu Iwata,et al.  Unsupervised group matching with application to cross-lingual topic matching without alignment information , 2017, Data Mining and Knowledge Discovery.

[116]  Jijun Tang,et al.  Identification of Drug-Target Interactions via Dual Laplacian Regularized Least Squares with Multiple Kernel Fusion , 2020, Knowl. Based Syst..

[117]  Michael I. Jordan,et al.  Iterative Discovery of Multiple AlternativeClustering Views , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[119]  David Zhang,et al.  Similarity and diversity induced paired projection for cross-modal retrieval , 2020, Inf. Sci..

[120]  Zhengming Ma,et al.  HSIC regularized manifold learning , 2019, J. Intell. Fuzzy Syst..

[121]  Jianhua Xu,et al.  A multi-label feature extraction algorithm via maximizing feature variance and feature-label dependence simultaneously , 2016, Knowl. Based Syst..

[122]  Wei Wang,et al.  Globality and locality incorporation in distance metric learning , 2014, Neurocomputing.

[123]  Menglan Cai,et al.  Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification , 2019, BMC Medical Genomics.

[124]  James Bailey,et al.  Generating multiple alternative clusterings via globally optimal subspaces , 2014, Data Mining and Knowledge Discovery.

[125]  Qingwei Gao,et al.  Consistency and diversity neural network multi-view multi-label learning , 2021, Knowl. Based Syst..

[126]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[127]  Dongyan Zhao,et al.  An overview of kernel alignment and its applications , 2012, Artificial Intelligence Review.

[128]  Ali Ghodsi,et al.  Sparse supervised principal component analysis (SSPCA) for dimension reduction and variable selection , 2017, Eng. Appl. Artif. Intell..

[129]  Qinghua Hu,et al.  FISH-MML: Fisher-HSIC Multi-View Metric Learning , 2018, IJCAI.

[130]  M. Omair Ahmad,et al.  Optimizing the kernel in the empirical feature space , 2005, IEEE Transactions on Neural Networks.

[131]  Fakhri Karray,et al.  Multiview Supervised Dictionary Learning in Speech Emotion Recognition , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[132]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Zhejun Wu,et al.  Multi-label feature selection via manifold regularization and dependence maximization , 2021, Pattern Recognit..

[134]  Alexander J. Smola,et al.  Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference , 2015, ACM Trans. Intell. Syst. Technol..

[135]  Tingyu Lai,et al.  A kernel-based measure for conditional mean dependence , 2021, Comput. Stat. Data Anal..

[136]  K. Lam,et al.  Subspace learning for facial expression recognition: an overview and a new perspective , 2021, APSIPA Transactions on Signal and Information Processing.

[137]  Bob Zhang,et al.  Class-Specific Reconstruction Transfer Learning for Visual Recognition Across Domains , 2019, IEEE Transactions on Image Processing.