Nano-Mechanical Response of Red Blood Cells

[1]  M. Papi,et al.  Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level. , 2015, Nanoscale.

[2]  M. Papi,et al.  Plasma Protein Corona Reduces the Haemolytic Activity of the Graphene Oxide Nano and Micro Flakes , 2015 .

[3]  G Ciasca,et al.  Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer. , 2015, Soft matter.

[4]  M. Papi,et al.  Effect of Alginate Lyase on Biofilm-Grown Helicobacter pylori Probed by Atomic Force Microscopy , 2015 .

[5]  M. Papi,et al.  Biomechanical investigation of colorectal cancer cells , 2014 .

[6]  G. Tomaiuolo Biomechanical properties of red blood cells in health and disease towards microfluidics. , 2014, Biomicrofluidics.

[7]  D. Kell,et al.  Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. , 2014, Integrative biology : quantitative biosciences from nano to macro.

[8]  L. Lamberti,et al.  A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida , 2014, Interface Focus.

[9]  R. Akhtar,et al.  Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera , 2014 .

[10]  M. Papi,et al.  Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces , 2013, Nanotechnology.

[11]  F. Sbrana,et al.  Biological and structural characterization of a naturally inspired material engineered from elastin as a candidate for tissue engineering applications. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[12]  D. Kell,et al.  High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease , 2013, Front. Aging Neurosci..

[13]  M. Vassalli,et al.  Mechanism of aluminium bio-mineralization in the apoferritin cavity , 2013 .

[14]  L. Lamberti,et al.  Effect of the Residual Stress on Soft Sample Nanoindentation , 2013 .

[15]  Massimiliano Papi,et al.  Viscous forces are predominant in the zona pellucida mechanical resistance , 2013 .

[16]  L. Lamberti,et al.  Whole-Depth Change in Bovine Zona Pellucida Biomechanics after Fertilization: How Relevant in Hindering Polyspermy? , 2012, PloS one.

[17]  M. Fenech,et al.  Iron and genome stability: an update. , 2012, Mutation research.

[18]  M. Papi,et al.  Transient state kinetic investigation of ferritin iron release , 2012 .

[19]  S. Guido,et al.  Start-up shape dynamics of red blood cells in microcapillary flow. , 2011, Microvascular research.

[20]  C. Lim,et al.  Mechanopathology of red blood cell diseases --- Why mechanics matters , 2011 .

[21]  M. Papi,et al.  Ristocetin-induced self-aggregation of von Willebrand factor , 2010, European Biophysics Journal.

[22]  G. Capellini,et al.  Agglomeration process in thin silicon-, strained silicon-, and silicon germanium-on-insulator substrates , 2009 .

[23]  Małgorzata Lekka,et al.  Applicability of AFM in cancer detection. , 2009, Nature nanotechnology.

[24]  M Musielak,et al.  Red blood cell-deformability measurement: review of techniques. , 2009, Clinical hemorheology and microcirculation.

[25]  M. Papi,et al.  Globular structure of human ovulatory cervical mucus , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  K. Sosada,et al.  Red Blood Cell Aggregation and Deformability among Patients Qualified for Bariatric Surgery , 2007, Obesity surgery.

[27]  S. Cicco,et al.  Hemorheological aspects in the microvasculature of several pathologies. , 2007, Advances in experimental medicine and biology.

[28]  J. Delaunay The molecular basis of hereditary red cell membrane disorders. , 2007, Blood reviews.

[29]  M. Papi,et al.  Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. , 2006, Biophysical Journal.

[30]  Massimo Vassalli,et al.  Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers , 2006 .

[31]  M. Lekka,et al.  Erythrocyte stiffness in diabetes mellitus studied with atomic force microscope. , 2006, Clinical hemorheology and microcirculation.

[32]  A. Gelb,et al.  The clinical importance of erythrocyte deformability, a hemorrheological parameter , 1992, Annals of Hematology.

[33]  J. Stuart,et al.  Red cell deformability and haematological disorders. , 1990, Blood reviews.