Finite and infinite cyclic extensions of free groups

Using Stalling's characterization [11] of finitely generated (f. g.) groups with infinitely many ends, and subgroup theorems for generalized free products and HNN groups (see [9], [5], and [7]), we give (in Theorem 1) a n.a.s.c. for a f.g. group to be a finite extension of a free group. Specifically (using the terminology extension of and notation of [5]), a f.g. group G is a finite extension of a free group if and only if G is an HNN group where K is a tree product of a finite number of finite groups (the vertices of K ), and each (associated) subgroup L i , M i is a subgroup of a vertex of K .