Least Squares Estimation of Large Dimensional Threshold Factor Models

This paper studies large dimensional factor models with threshold-type regime shifts in the loadings. We estimate the threshold by concentrated least squares, and factors and loadings by principal components. The estimator for the threshold is superconsistent, with convergence rate that depends on the time and cross-sectional dimensions of the panel, and it does not affect the estimator for factors and loadings: this has the same convergence rate as in linear factor models. We propose model selection criteria and a linearity test. Empirical application of the model shows that connectedness in financial variables increases during periods of high economic policy uncertainty.

[1]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[2]  A. Timmermann,et al.  Regime Changes and Financial Markets , 2011 .

[3]  Matteo Barigozzi,et al.  Improved penalization for determining the number of factors in approximate factor models , 2010 .

[4]  A. Lo,et al.  Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors , 2011 .

[5]  Bruce E. Hansen,et al.  Threshold effects in non-dynamic panels: Estimation, testing, and inference , 1999 .

[6]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[7]  Gregory Connor,et al.  Risk and Return in an Equilibrium Apt: Application of a New Test Methodology , 1988 .

[8]  L. Pedersen,et al.  Measuring Systemic Risk , 2010 .

[9]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[10]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[11]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[12]  Sydney C. Ludvigson,et al.  The Empirical Risk-Return Relation: A Factor Analysis Approach , 2005 .

[13]  F. Dias,et al.  Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .

[14]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[15]  Gregory Connor,et al.  Performance Measurement with the Arbitrage Pricing Theory: A New Framework for Analysis , 1985 .

[16]  K. Pearson Mathematical contributions to the theory of evolution. VIII. On the correlation of characters not quantitatively measurable , 2022, Proceedings of the Royal Society of London.

[17]  Liang Chen,et al.  Estimating the common break date in large factor models , 2015 .

[18]  Jianqing Fan,et al.  An l∞ Eigenvector Perturbation Bound and Its Application to Robust Covariance Estimation , 2018, Journal of machine learning research : JMLR.

[19]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[20]  R. Tsay Testing and modeling multivariate threshold models , 1998 .

[21]  Frank Schorfheide,et al.  Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities , 2013 .

[22]  Yohei Yamamoto,et al.  Testing for Factor Loading Structural Change under Common Breaks , 2015 .

[23]  George Kapetanios,et al.  Small sample properties of the conditional least squares estimator in SETAR models , 2000 .

[24]  D. Massacci Multivariate Regime Switching Model with Flexible Threshold Variable , 2014 .

[25]  Marco Lippi,et al.  The generalized dynamic factor model: consistency and rates , 2004 .

[26]  Atsushi Inoue,et al.  TESTS FOR PARAMETER INSTABILITY IN DYNAMIC FACTOR MODELS , 2014, Econometric Theory.

[27]  Allan Timmermann,et al.  Elusive Return Predictability , 2008 .

[28]  Jörg Breitung,et al.  Testing for Structural Breaks in Dynamic Factor Models , 2011, SSRN Electronic Journal.

[29]  M. Hallin,et al.  Dynamic factor models with infinite-dimensional factor spaces: One-sided representations , 2013 .

[30]  Marco Lippi,et al.  THE GENERALIZED DYNAMIC FACTOR MODEL: REPRESENTATION THEORY , 2001, Econometric Theory.

[31]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[32]  F. Diebold,et al.  UNIVERSITY OF SOUTHERN CALIFORNIA Center for Applied Financial Economics (CAFE) On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms , 2011 .

[33]  Magda Peligrad,et al.  Invariance Principles for Mixing Sequences of Random Variables , 1982 .

[34]  J. Stock,et al.  Consistent Factor Estimation in Dynamic Factor Models with Structural Instability , 2013 .

[35]  Gregory Connor,et al.  A Test for the Number of Factors in an Approximate Factor Model , 1993 .

[36]  Jianqing Fan,et al.  PROJECTED PRINCIPAL COMPONENT ANALYSIS IN FACTOR MODELS. , 2014, Annals of statistics.

[37]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[38]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[39]  B. Hansen Threshold autoregression in economics , 2011 .

[40]  Sven Ove Hansson,et al.  Measuring Uncertainty , 2009, Stud Logica.

[41]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[42]  Jesus Gonzalo,et al.  Detecting big structural breaks in large factor models , 2014 .

[43]  Yuan Liao,et al.  Efficient Estimation of Approximate Factor Models via Regularized Maximum Likelihood , 2012, 1209.5911.

[44]  K. Chan,et al.  Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .

[45]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[46]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[47]  S. Davis,et al.  Measuring Economic Policy Uncertainty , 2013 .

[48]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[49]  Kung-Sik Chan,et al.  Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .

[50]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[51]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .