Gauss quadrature rules for a generalized Hermite weight function

Abstract In this paper we give an algorithm for finding the coefficients in the three term recurrence relation for the polynomials orthogonal with respect to the weight function W(x) = ∣x − b∣2αexp[−(x + c)2] on R , where α , b , c ∈ R , 2α > −1. The algorithm is based on the discretization technique proposed by Gautschi, with the Lanczos algorithm. Using the coefficients obtained by this algorithm we construct the Gauss quadrature rules relative to the weight function W(x). To show the performance of the new algorithm we give some numerical examples.

[1]  Walter Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .

[2]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[3]  Lothar Reichel,et al.  Symmetric Gauss–Lobatto and Modified Anti-Gauss Rules , 2003 .

[4]  Giovanni Monegato,et al.  An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.

[5]  Ali Ihsan Hasçelik An Algorithm for the Exact Numerical Integration of a Special Class of Functions , 2002, Int. J. Comput. Math..

[6]  Dirk P. Laurie,et al.  STRATIFIED SEQUENCES OF NESTED QUADRATURE FORMULAS , 1992 .

[7]  G. Milovanović,et al.  NUMERICAL CONSTRUCTION OF THE GENERALIZED HERMITE POLYNOMIALS , 2003 .

[8]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[9]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[10]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[11]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[12]  Sven Ehrich,et al.  On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas , 2002 .

[13]  T. N.L. Patterson Stratified nested and related quadrature rules , 1999 .

[14]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[15]  Gene H. Golub,et al.  The numerically stable reconstruction of a Jacobi matrix from spectral data , 1977, Milestones in Matrix Computation.

[16]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .