Gauss quadrature rules for a generalized Hermite weight function
暂无分享,去创建一个
[1] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[2] Dirk P. Laurie,et al. Anti-Gaussian quadrature formulas , 1996, Math. Comput..
[3] Lothar Reichel,et al. Symmetric Gauss–Lobatto and Modified Anti-Gauss Rules , 2003 .
[4] Giovanni Monegato,et al. An overview of the computational aspects of Kronrod quadrature rules , 2001, Numerical Algorithms.
[5] Ali Ihsan Hasçelik. An Algorithm for the Exact Numerical Integration of a Special Class of Functions , 2002, Int. J. Comput. Math..
[6] Dirk P. Laurie,et al. STRATIFIED SEQUENCES OF NESTED QUADRATURE FORMULAS , 1992 .
[7] G. Milovanović,et al. NUMERICAL CONSTRUCTION OF THE GENERALIZED HERMITE POLYNOMIALS , 2003 .
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[10] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[11] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[12] Sven Ehrich,et al. On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas , 2002 .
[13] T. N.L. Patterson. Stratified nested and related quadrature rules , 1999 .
[14] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[15] Gene H. Golub,et al. The numerically stable reconstruction of a Jacobi matrix from spectral data , 1977, Milestones in Matrix Computation.
[16] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .