Stochastic Search and Phase Transitions: AI Meets Physics

Computationally hard instances of combinatorial problems arise at a certain critical ratio of constraints to variables. At the critical ratio, problem distributions undergo dramatic changes. I will discuss how an analogous phenomenon occurs in phase transitions studied in physics, and how experiments with critically constrained problems have led to surprising new insights into average-case complexity and stochastic search methods in AI.

[1]  Yumi K. Tsuji,et al.  EVIDENCE FOR A SATISFIABILITY THRESHOLD FOR RANDOM 3CNF FORMULAS , 1992 .

[2]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[3]  Holger H. Hoos,et al.  GSAT versus Simulated Annealing , 1994, ECAI.

[4]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[5]  Tad Hogg,et al.  The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..

[6]  B A Huberman,et al.  Cooperative Solution of Constraint Satisfaction Problems , 1991, Science.

[7]  Mark D. Johnston,et al.  A discrete stochastic neural network algorithm for constraint satisfaction problems , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[8]  Bart Selman,et al.  Near-Optimal Plans, Tractability, and Reactivity , 1994, KR.

[9]  Gadi Pinkas,et al.  Improving Connectionist Energy Minimization , 1995, J. Artif. Intell. Res..

[10]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[11]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[12]  P. Langley Systematic and nonsystematic search strategies , 1992 .

[13]  Toby Walsh,et al.  An Empirical Analysis of Search in GSAT , 1993, J. Artif. Intell. Res..

[14]  Bart Selman,et al.  Hard Problems for Simple Default Logics , 1989, Artif. Intell..

[15]  Matthew L. Ginsberg,et al.  GSAT and dynamic backtracking , 1994, KR 1994.

[16]  Bart Selman,et al.  Systematic Versus Stochastic Constraint Satisfaction , 1995, IJCAI.

[17]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .

[18]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[19]  Hector J. Levesque,et al.  Support Set Selection for Abductive and Default Reasoning , 1996, Artif. Intell..

[20]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[21]  Paul Walton Purdom,et al.  Average Time Analyses of Simplified Davis-Putnam Procedures , 1982, Inf. Process. Lett..

[22]  William M. Spears,et al.  Simulated annealing for hard satisfiability problems , 1993, Cliques, Coloring, and Satisfiability.

[23]  Bart Selman,et al.  Reasoning With Characteristic Models , 1993, AAAI.

[24]  Christophe Lecoutre Constraint Networks , 1992 .

[25]  Paul Walton Purdom,et al.  Polynomial-average-time satisfiability problems , 1987, Inf. Sci..

[26]  Henry A. Kautz,et al.  Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT , 1995 .

[27]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[28]  O. Dubois Can a very simple algorithm be efficient for solving the SAT problem , 1993 .

[29]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[30]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[31]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[32]  Steven Minton,et al.  Solving Large-Scale Constraint-Satisfaction and Scheduling Problems Using a Heuristic Repair Method , 1990, AAAI.

[33]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[34]  B Cipra Pinning down a treacherous border in logical statements. , 1994, Science.

[35]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[36]  Hector J. Levesque,et al.  Making Believers out of Computers , 1986, Artif. Intell..

[37]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[38]  Eugene C. Freuder,et al.  Constraint-based reasoning , 1994 .

[39]  Kurt Konolige,et al.  Easy to be Hard: Difficult Problems for Greedy Algorithms , 1994, KR.

[40]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[41]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..

[42]  Bart Selman Domain-Specific Complexity Tradeoffs , 1994, ECAI.

[43]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[44]  Bart Selman,et al.  Knowledge compilation and theory approximation , 1996, JACM.

[45]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[46]  John V. Franco,et al.  Elimination of Infrequent Variables Improves Average Case Performance of Satisfiability Algorithms , 1991, SIAM J. Comput..

[47]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[48]  Rina Dechter,et al.  GSAT and Local Consistency , 1995, IJCAI.

[49]  Béla Bollobás,et al.  Random Graphs , 1985 .

[50]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[51]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[52]  Jon W. Freeman Hard Random 3-SAT Problems and the Davis-Putnam Procedure , 1996, Artif. Intell..

[53]  BarnhartCynthia,et al.  The fleet assignment problem , 1995 .

[54]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[55]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[56]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[57]  Andrew J. Davenport,et al.  GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement , 1994, AAAI.

[58]  Tad Hogg,et al.  Expected Gains from Parallelizing Constraint Solving for Hard Problems , 1994, AAAI.

[59]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[60]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[61]  Steven Hampson,et al.  Plateaus and plateau search in Boolean satisfiability problems , 1993 .

[62]  A. B. Baker Intelligent Backtracking on the Hardest Constraint Problems , 1995 .

[63]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[64]  Jun Gu,et al.  Efficient local search for very large-scale satisfiability problems , 1992, SGAR.

[65]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[66]  Tad Hogg,et al.  Using Deep Structure to Locate Hard Problems , 1992, AAAI.

[67]  Henry Kautz,et al.  Hard problems for simple default theories , 1991 .

[68]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..