The Radius of Vanishing Bubbles in Equivariant Harmonic Map Flow from D2 to S2
暂无分享,去创建一个
[1] P. Topping. Winding behaviour of finite-time singularities of the harmonic map heat flow* , 2004 .
[2] Peter M. Topping,et al. Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow , 2004 .
[3] Michael Struwe,et al. Geometric evolution problems , 1995 .
[4] Michiel Bertsch,et al. Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk , 2002 .
[5] Michael Struwe,et al. Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .
[6] Michael Wolf,et al. Nonlinear partial differential equations in differential geometry , 1995 .
[7] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[8] Michael Struwe,et al. On the evolution of harmonic mappings of Riemannian surfaces , 1985 .
[9] J. Eells,et al. Harmonic Mappings of Riemannian Manifolds , 1964 .
[10] G. Laumon,et al. A Series of Modern Surveys in Mathematics , 2000 .
[11] Lev Davidovich Landau,et al. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .
[12] Rugang Ye,et al. Finite-time blow-up of the heat flow of harmonic maps from surfaces , 1992 .
[13] John R. King,et al. Formal Asymptotics of Bubbling in the Harmonic Map Heat Flow , 2003, SIAM J. Appl. Math..
[14] J. Coron,et al. Explosion en temps fini pour le flot des applications harmoniques , 1989 .