Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators

The plasma dispersion effect and free-carrier absorption in strained SiGe are analyzed using the six-band k·p method and the Drude model. Since the hole conductivity mass of SiGe is decreased by applying compressive strain, enhancement of the plasma dispersion effect, and free-carrier absorption in strained SiGe is expected. We predict that Si0.5Ge0.5 coherently grown on Si will exhibit three times higher plasma dispersion and four times higher free-carrier absorption than Si. The modulation characteristics of SiGe quantum well metal-oxide-semiconductor (MOS) optical modulators are also analyzed by technology computer-aided design simulation and finite-difference optical mode analysis. An extremely small VπL of 0.033 V-cm is predicted in the case of a compressively strained Si0.5Ge0.5 quantum well in conjunction with a high-k gate dielectric MOS structure. The enhancement of free-carrier absorption in the SiGe high-k MOS modulator also makes in-line intensity modulation feasible and an intensity modulation efficiency of 9 dB/mm/V is predicted.

[1]  John C. Bean,et al.  MEASUREMENT OF THE BANDGAP OF GexSi1−x/Si STRAINED-LAYER HETEROSTRUCTURES , 1985 .

[2]  F Y Gardes,et al.  40 Gb/s silicon photonics modulator for TE and TM polarisations. , 2011, Optics express.

[3]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[4]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[5]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[6]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[7]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[8]  J. M. McGregor,et al.  Drift hole mobility in strained and unstrained doped Si/sub 1-x/Ge/sub x/ alloys , 1993 .

[9]  R. V. van Dover,et al.  Si-doped aluminates for high temperature metal-gate CMOS: Zr-Al-Si-O, a novel gate dielectric for low power applications , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[10]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[11]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[12]  M. Watts,et al.  Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[14]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[15]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[16]  J. Dismukes,et al.  Lattice Parameter and Density in Germanium-Silicon Alloys1 , 1964 .

[17]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[18]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[19]  J. M. Luttinger Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory , 1956 .

[20]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[21]  Geert Hellings,et al.  Implant-Free SiGe Quantum Well pFET: A novel, highly scalable and low thermal budget device, featuring raised source/drain and high-mobility channel , 2010, 2010 International Electron Devices Meeting.

[22]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[23]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[24]  Po Dong,et al.  High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides. , 2010, Optics express.

[25]  Jun Ushida,et al.  25 GHz operation of silicon optical modulator with projection MOS structure , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[26]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[27]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[28]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[29]  Y. Shiraki,et al.  Silicon–germanium (SiGe) nanostructures , 2011 .

[30]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[31]  R. Ho,et al.  Ultra-low-energy all-CMOS modulator integrated with driver. , 2010, Optics express.

[32]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[33]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[34]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[35]  D. J. Robbins,et al.  Near‐band‐gap photoluminescence from pseudomorphic Si1−xGex single layers on silicon , 1992 .

[36]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[37]  M. Salib,et al.  Phase modulation efficiency and transmission loss of silicon optical phase shifters , 2005, IEEE Journal of Quantum Electronics.