Exact Algorithms for Edge Domination

In this paper we present a faster exact exponential timealgorithm for the edge dominating set problem. Our algorithm usesO(1.3226n) time and polynomial space. The algorithm combines an enumerationapproach based on enumerating minimal vertex covers withthe branch and reduce paradigm. Its time bound is obtained using themeasure and conquer technique. The algorithm is obtained by startingwith a slower algorithm which is refined stepwise. In this way a series ofalgorithms appears, each one slightly faster than the previous, resultingin the O(1.3226n) time algorithm. The techniques also gives faster exact algorithms for: minimum weightedge dominating set, minimum (weight) maximal matching, matrix dominationand the parametrised version of minimum weight maximal matching.

[1]  Saket Saurabh,et al.  Efficient Exact Algorithms through Enumerating Maximal Independent Sets and Other Techniques , 2007, Theory of Computing Systems.

[2]  Hans L. Bodlaender,et al.  Design by Measure and Conquer, A Faster Exact Algorithm for Dominating Set , 2008, STACS.

[3]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[4]  Henning Fernau,et al.  edge dominating set: Efficient Enumeration-Based Exact Algorithms , 2006, IWPEC.

[5]  Fabrizio Grandoni,et al.  Measure and conquer: a simple O(20.288n) independent set algorithm , 2006, SODA '06.

[6]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms: Some Open Problems (Invited Talk) , 2004, IWPEC.

[7]  Ján Plesník,et al.  Equivalence between the minimum covering problem and the maximum matching problem , 1984, Discret. Math..

[8]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[9]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[10]  Yngve Villanger,et al.  Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.

[11]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[12]  Ján Plesník,et al.  Constrained Weighted Matchings and Edge Coverings in Graphs , 1999, Discret. Appl. Math..

[13]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[14]  David Eppstein,et al.  Quasiconvex analysis of backtracking algorithms , 2003, SODA '04.

[15]  Robert D. Carr,et al.  A $${{10}}$$ -Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem , 2001, J. Comb. Optim..

[16]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[17]  Frank Harary,et al.  Graph Theory , 2016 .

[18]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[19]  Kazuo Iwama,et al.  Worst-Case Upper Bounds for kSAT (Column: Algorithmics) , 2004, Bull. EATCS.

[20]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[21]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[22]  Fedor V. Fomin,et al.  Branching and Treewidth Based Exact Algorithms , 2006, ISAAC.

[23]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[24]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[25]  J. Moon,et al.  On cliques in graphs , 1965 .

[26]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[27]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[28]  Eugene L. Lawler,et al.  Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..

[29]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.