Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.

We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies.

[1]  E. Goldys,et al.  Extreme sensitivity of the optical properties of metal nanostructures to minor variations in geometry is due to highly localized electromagnetic field modes , 2011 .

[2]  M. Moreno,et al.  Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. , 2011, ACS nano.

[3]  Xueming Liu,et al.  Tunable band-pass plasmonic waveguide filters with nanodisk resonators. , 2010, Optics express.

[4]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[5]  B. Reinhard,et al.  Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[6]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[7]  S. Bozhevolnyi,et al.  Surface enhanced Raman microscopy with metal nanoparticle arrays , 2009 .

[8]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[9]  Luca Dal Negro,et al.  Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. , 2009, ACS nano.

[10]  C T Koch,et al.  Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. , 2009, Optics letters.

[11]  W. Barnes,et al.  Diffractive coupling in gold nanoparticle arrays and the effect of disorder. , 2009, Optics letters.

[12]  Luis M. Liz-Marzán,et al.  Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method , 2008 .

[13]  P. Jain,et al.  Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. , 2008, Nano letters.

[14]  Logan K. Ausman,et al.  Methods for describing the electromagnetic properties of silver and gold nanoparticles. , 2008, Accounts of chemical research.

[15]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[16]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[17]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[18]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[19]  Jan Renger,et al.  Distance dependent spectral tuning of two coupled metal nanoparticles. , 2008, Nano letters.

[20]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[21]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[22]  P. Jain,et al.  Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. , 2007, Nano letters.

[23]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[24]  T. Wriedt,et al.  Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method , 2006 .

[25]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[26]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[27]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[28]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[29]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[30]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[31]  M. Ishikawa,et al.  Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method , 2003 .

[32]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[33]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[34]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[35]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[36]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[37]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[38]  Bernhard Lamprecht,et al.  Optical properties of Ag and Au nanowire gratings , 2001 .

[39]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[40]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[41]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[42]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[43]  Franz R. Aussenegg,et al.  Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign , 1996 .

[44]  Christine D. Keating,et al.  Two-dimensional arrays of colloidal gold particles : A flexible approach to macroscopic metal surfaces , 1996 .

[45]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[46]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[47]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[48]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[49]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[50]  Chung-Yuan Mou,et al.  Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. , 2009, Nano letters.

[51]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[52]  P. F. Liao,et al.  Lightning rod effect in surface enhanced Raman scattering , 1982 .