Broadband perfect absorber based on one ultrathin layer of refractory metal.

Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure patterning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4-1.4 μm, and the measurements under angled incidence within 400-800 nm prove that the absorber is angle-insensitive and polarization-independent.

[1]  Yanxia Cui,et al.  Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate. , 2014, Optics letters.

[2]  Wilhelm Woltersdorff,et al.  Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot , 1934 .

[3]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[4]  Z. Jacob,et al.  High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. , 2012, Optics express.

[5]  Svend-Age Biehs,et al.  Thermal radiation and near-field energy density of thin metallic films , 2007, 1103.3684.

[6]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[7]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[8]  Long Chen,et al.  Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array , 2014 .

[9]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[10]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[11]  N. Mattiucci,et al.  Impedance matched thin metamaterials make metals absorbing , 2013, Scientific Reports.

[12]  Xiaodong Yang,et al.  Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics , 2014 .

[13]  Bong Jae Lee,et al.  Design and fabrication of planar multilayer structures with coherent thermal emission characteristics , 2006 .

[14]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[15]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[16]  Haifeng Hu,et al.  Broadband absorption engineering of hyperbolic metafilm patterns , 2014, Scientific Reports.

[17]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[18]  Dominique Barchiesi,et al.  Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth , 2014 .

[19]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[20]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[21]  H. Haus Waves and fields in optoelectronics , 1983 .

[22]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.