Membrane processes for water reuse from the effluent of industrial park wastewater treatment plant : a study on flux and fouling of membrane

Both the relationship between the flux and the fouling mechanism of ultrafiltration (UF) membrane and the effects of pretreatment before reverse osmosis (RO) process on the treatment of the effluent of industrial park wastewater treatment plant (IPWTP) were investigated to examine the application of membrane processes on the water reuse treatment. For the former, the flux data was first fitted to the Hermia model to give the implication of the fouling mechanism. Then, the fouling mechanism was further identified with the aid of the SEM morphology of membrane surfaces. For the latter, the changes of both water characteristics (turbidity, TOC, conductivity, particle size distribution, and organic solute molecular weight) and membrane properties (surface zeta potential and surface morphology) before and after the treatment of membrane processes were measured. It was found that the major blocking mechanisms of UF membrane process at initial and final stage were standard blocking of pore (causing from colloid materials) and cake blocking of pore (causing from suspended particles), respectively. On the other hand, it was concluded that the permeate from 1 μm/UF/RO process was suitable for the reuse of cooling water and low pressure boiler water.