How obliquity cycles powered early Pleistocene global ice‐volume variability

Milankovitch theory proposes that the magnitude of high‐latitude summer insolation dictates the continental ice‐volume response by controlling summer snow melt, thus anticipating a substantial ice‐volume contribution from the strong summer insolation signal of precession. Yet almost all of the early Pleistocene δ18O records' signal strength resides at the frequency of obliquity. Here we explore this discrepancy using a climate‐vegetation‐ice sheet model to simulate climate‐ice sheet response to transient orbits of varying obliquity and precession. Spectral analysis of our results shows that despite contributing significantly less to the summer insolation signal, almost 60% of the ice‐volume power exists at the frequency of obliquity due to a combination of albedo feedbacks, seasonal offsets, and orbital cycle duration differences. Including eccentricity modulation of the precession ice‐volume component and assuming a small Antarctic ice response to orbital forcing produce a signal that agrees with the δ18O ice‐volume proxy records.

[1]  Robert B. Dunbar,et al.  Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth , 2013 .

[2]  A. Clement,et al.  The Contribution of Radiative Feedbacks to Orbitally Driven Climate Change , 2013 .

[3]  D. Pollard,et al.  Mending Milankovitch's theory: obliquity amplification by surface feedbacks , 2013 .

[4]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[5]  Anthony J. Broccoli,et al.  Climate Feedbacks in Response to Changes in Obliquity , 2011 .

[6]  C. Poulsen,et al.  Terminating the Last Interglacial: The Role of Ice Sheet–Climate Feedbacks in a GCM Asynchronously Coupled to an Ice Sheet Model , 2011 .

[7]  Andreas Schmittner,et al.  Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM , 2010 .

[8]  G. Balco,et al.  Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet , 2010 .

[9]  D. Pollard,et al.  Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles , 2010 .

[10]  A. Ganopolski,et al.  Corrigendum to "An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change" published in The Cryosphere, 4, 129–144, 2010 , 2010 .

[11]  Alexander Robinson,et al.  An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change , 2009 .

[12]  Y. Rosenthal,et al.  Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions , 2009, Science.

[13]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[14]  C. Poulsen,et al.  Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks , 2008 .

[15]  Caroline H. Lear,et al.  Thresholds for Cenozoic bipolar glaciation , 2008, Nature.

[16]  J. V. D. Berg,et al.  A mass balance model for the Eurasian ice sheet for the last 120,000 years , 2008 .

[17]  E. Tziperman,et al.  Integrated Summer Insolation Forcing and 40,000-Year Glacial Cycles: The Perspective from an Ice-Sheet/Energy-Balance Model , 2008 .

[18]  A. Abe‐Ouchi,et al.  Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle , 2007 .

[19]  W. Ruddiman Orbital changes and climate , 2006 .

[20]  G. Roe In defense of Milankovitch , 2006 .

[21]  Peter Huybers,et al.  Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing , 2006, Science.

[22]  Kerim H. Nisancioglu,et al.  Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global δ18O Record , 2006, Science.

[23]  V. Brovkin,et al.  Vegetation dynamics amplifies precessional forcing , 2006 .

[24]  S. Weber,et al.  Sea‐ice feedbacks on the climatic response to precession and obliquity forcing , 2005 .

[25]  Shih-Yu Lee,et al.  Tropical Pacific climate response to obliquity forcing in the Pleistocene , 2005 .

[26]  C. Wunsch,et al.  Obliquity pacing of the late Pleistocene glacial terminations , 2005, Nature.

[27]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[28]  A. Ganopolski,et al.  Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation , 2005 .

[29]  M. Wara,et al.  Regional climate shifts caused by gradual global cooling in the Pliocene epoch , 2004, Nature.

[30]  M. Loutre,et al.  Does mean annual insolation have the potential to change the climate Earth and Planetary Science Let , 2004 .

[31]  W. Peltier,et al.  Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. , 2004 .

[32]  A. Broccoli,et al.  Orbital forcing of Arctic climate: mechanisms of climate response and implications for continental glaciation , 2003 .

[33]  Sandy P. Harrison,et al.  Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections , 2003 .

[34]  W. Ruddiman,et al.  Orbital insolation, ice volume, and greenhouse gases. , 2003 .

[35]  S. George Philander,et al.  Role of tropics in changing the response to Milankovich forcing some three million years ago , 2003 .

[36]  M. Raymo,et al.  The 41 kyr world: Milankovitch's other unsolved mystery , 2003 .

[37]  M. Bender Orbital tuning chronology for the Vostok climate record supported by trapped gas composition , 2002 .

[38]  S. Marshall,et al.  Modeling North American Freshwater Runoff through the Last Glacial Cycle , 1999, Quaternary Research.

[39]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[40]  Milutin Milankovictch,et al.  Canon of insolation and the ice-age problem : (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941. , 1998 .

[41]  D. Pollard,et al.  Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith , 1998 .

[42]  Pascale Braconnot,et al.  Sensitivity of paleoclimate simulation results to season definitions , 1997 .

[43]  J. Kutzbach,et al.  Role of orbitally induced changes in tundra area in the onset of glaciation , 1996, Nature.

[44]  J. Kutzbach,et al.  Snow cover and sea ice sensitivity to generic changes in Earth orbital parameters , 1995 .

[45]  Albert Lunde,et al.  A Paleoclimate Model of Northern Hemisphere Ice Sheets , 1981, Quaternary Research.

[46]  D. Pollard A simple parameterization for ice sheet ablation rate ’ By , 2010 .

[47]  M. Raymo,et al.  Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics , 2007 .

[48]  Peter John Huybers,et al.  Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression , 2007 .

[49]  M. Raymo,et al.  Plio-Pleistocene ice volume, Antarctic climate, and the global delta18O record. , 2006, Science.

[50]  M. Loutre,et al.  Modelling northern hemisphere ice volume over the last 3 Ma , 1999 .

[51]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[52]  S. Schneider,et al.  Asynchronous Coupling of Ice-Sheet and Atmospheric Forcing Models , 1990, Annals of Glaciology.