Defect Thermodynamics and Transport Properties of Proton Conducting Oxide BaZr1−xYxO3−δ (x ≤ 0.1) Guided by Density Functional Theory Modeling

[1]  J. Maier,et al.  Oxides with Mixed Protonic and Electronic Conductivity , 2021, Annual Review of Materials Research.

[2]  William T. Gibbons,et al.  A mini-review on proton conduction of BaZrO3-based perovskite electrolytes , 2021, Journal of Physics: Energy.

[3]  G. Wahnström,et al.  Percolation Transition in Hole-Conducting Acceptor-Doped Barium Zirconate , 2020, Chemistry of Materials.

[4]  A. Navrotsky,et al.  Systematic Water Uptake Energetics of Yttrium-Doped Barium Zirconate—A High Resolution Thermochemical Study , 2020 .

[5]  Gregory A. Hackett,et al.  Positive Effects of H2O on the Hydrogen Oxidation Reaction on Sr2Fe1.5Mo0.5O6−δ-Based Perovskite Anodes for Solid Oxide Fuel Cells , 2020 .

[6]  P. Hyldgaard,et al.  Unraveling the Ground-State Structure of BaZrO3 by Neutron Scattering Experiments and First-Principles Calculations , 2020 .

[7]  J. Ravichandran,et al.  Electron Doping BaZrO3 via Topochemical Reduction. , 2019, ACS applied materials & interfaces.

[8]  D. Tsvetkov,et al.  Red-Ox Energetics and Holes Trapping in Yttrium-Substituted Barium Zirconate BaZr0.9Y0.1O2.95 , 2019, Journal of The Electrochemical Society.

[9]  I. Leonidov,et al.  Acceptor doping, hydration and band-gap engineering of BaZrO3 , 2018 .

[10]  Maciej Haranczyk,et al.  PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators , 2016, Comput. Phys. Commun..

[11]  Ryan O'Hayre,et al.  Defect Incorporation and Transport within Dense BaZr0.8Y0.2O3 − δ(BZY20) Proton-Conducting Membranes , 2018 .

[12]  L. Putilov,et al.  The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3 , 2017 .

[13]  H. Matsumoto,et al.  First-Principles Calculations for the Energetics of the Hydration Reaction of Acceptor-Doped BaZrO3 , 2017 .

[14]  Donglin Han,et al.  Transport properties of acceptor-doped barium zirconate by electromotive force measurements , 2016 .

[15]  K. Reuter Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis , 2016, Catalysis Letters.

[16]  L. Putilov,et al.  The role of deep acceptor levels in hydration and transport processes in BaZr1 − xYxO3 – δ and related materials , 2016, Journal of Solid State Electrochemistry.

[17]  Alfredo Pasquarello,et al.  Energetics of native point defects in GaN , 2015, 1704.03179.

[18]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[19]  Yoshihiro Yamazaki,et al.  Proton trapping in yttrium-doped barium zirconate. , 2013, Nature materials.

[20]  Yi-sheng Liu,et al.  Surface Electronic Structure of BaZr1-xYxO3-δ by Soft-X-Ray Spectroscopy , 2012 .

[21]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[22]  S. Haile,et al.  Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate , 2011 .

[23]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[24]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[25]  H. Kageyama,et al.  Transport properties of Ba (Zr0.8Y0.2)O3- δ perovskite , 2007 .

[26]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[27]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[28]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[29]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .